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preface
Jakub Langr

When I first discovered GANs in 2015, I instantly fell in love with the idea. It was the
kind of self-criticizing machine learning (ML) system that I always missed in other
parts of ML. Even as humans, we constantly generate possible plans and then discrim-
inate that just naively running into a door is not the best idea. GANs really made sense
to me—to get to the next level of AI, we should take advantage of automatically
learned representations and a machine learning feedback loop. After all, data was
expensive, and compute was getting cheap.

 The other thing I loved about GANs—though this realization came later—was its
growth curve. No other part of ML is so “new.” Most of computer vision was invented
before 1998, whereas GANs were not working before 2014. Since that moment, we
have had uninterrupted exponential growth until the time of this writing. 

 To date, we have achieved a great deal, cat meme vectors included. The first
GAN paper has more than 2.5 times the number of citations the original TensorFlow
paper got. GANs are frequently discussed by, for example, McKinsey & Company and
most mainstream media outlets. In other words, GANs have an impact far beyond
just tech.

 It is a fascinating new world of possibilities, and I am honored and excited to be
sharing this world with you. This book was close to two years in the making, and we
hope it will be as exciting to you as it is to us. We can’t wait to see what amazing inven-
tions you bring to the community.
xiii



PREFACExiv
Vladimir Bok

In the words of science fiction writer Arthur C. Clarke, “Technology advanced enough
is indistinguishable from magic.” These words inspired me in my early years of explor-
ing the impossible in computer science. However, after years of studying and working
in machine learning, I found I had become desensitized to the advances in machine
intelligence. When, in 2011, IBM’s Watson triumphed over its flesh-and-bone rivals in
Jeopardy, I was impressed; yet five years later, in 2016, when Google’s AlphaGo did the
same in the board game Go (computationally, an even more impressive achievement),
I was hardly moved. The accomplishment felt somewhat underwhelming—even
expected. The magic was gone.

  Then, GANs came along.
  I was first exposed to GANs during a research project at Microsoft Research. It was

2017 and, tired of hearing “Despacito” over and over again, my teammates and I set
out to experiment with generative modeling for music using spectrograms (visual
encodings of sound data). It quickly became apparent that GANs are vastly superior to
other techniques in their ability to synthesize data. Spectrograms produced by other
algorithms amounted to little more than white noise; those our GAN outputted were,
quite literally, music to our ears. It is one thing to see machines triumph in areas
where the objective is clear (as with Jeopardy and Go), and another to witness an algo-
rithm create something novel and authentic independently.

 I hope that, as you read our book, you will share my enthusiasm for GANs and
rediscover the magic in AI. Jakub and I worked tirelessly to make this cutting-edge
field accessible and comprehensive. We hope you will find our book enjoyable and
informative—and our humor bearable.



acknowledgments
This book would not be possible without the support and guidance from the editorial
team at Manning Publications. We are grateful to Christina Taylor for her hard work
and dedication; we could not have hoped for a better development editor. We were
also fortunate to work with John Hyaduck and Kostas Passadis, whose insightful feed-
back helped make this book the best it can be. 

 We also want to thank the Manning staff who worked behind the scenes on MEAP,
promotion, and other essential aspects of making this publication a reality: Brian
Sawyer, Christopher Kaufmann, Aleksandar Dragosavljević, Rebecca Rinehart, Melissa
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about this book
The goal of this book is to provide the definitive guide for anyone interested in
learning about Generative Adversarial Networks (GANs) from the ground up. Start-
ing from the simplest examples, we advance to some of the most innovative GAN
implementations and techniques. We make cutting-edge research accessible by pro-
viding the intuition behind these advances while sparing you all but the essential
math and theory. 

 Ultimately, our goal is to give you the knowledge and tools necessary not only to
understand what has been accomplished in GANs to date, but also to empower you to
find new applications of your choosing. The generative adversarial paradigm is full of
potential to be unraveled by enterprising individuals like you who can make an impact
through academic and real-world applications alike. We are thrilled to have you join
us on this journey.

Who should read this book
This book is intended for readers who already have some experience with machine
learning and neural networks. The following list indicates what you should ideally
know. Although we try our best to explain most things as we go, you should be confi-
dent about at least 70% of this list:

■ We expect you to be able to run intermediate Python programs. You do not
need to be a Python master, but you should have at least two years of Python
experience (ideally as a full-time data scientist or software engineer).
xvii
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■ You should understand object-oriented programming, how to work with
objects, and how to figure out their attributes and methods. You need to be able
to understand reasonably typical Python objects (for example, Pandas Data-
Frames) as well as atypical ones (for example, Keras layers).

■ You should understand the basics of machine learning theory, such as train/test
split, overfitting, weights, and hyperparameters, as well as the basics of super-
vised, unsupervised, and reinforcement learning. You should also be familiar
with metrics such as accuracy and mean squared error.

■ You should understand basic statistics and calculus, such as probability, density
functions, probability distributions, differentiation, and simple optimization.

■ You should understand elementary linear algebra, such as matrices, high-
dimensional spaces, and, ideally, principal component analysis.

■ You should understand the basics of deep learning—things such as feed-forward
networks, weights and biases, activation functions, regularization, stochastic gra-
dient descent, and backpropagation.

■ You should also have elementary familiarity with, or willingness to independently
learn, the Python-based machine learning library Keras.

We are not trying to scare you, but rather ensure that you will get the most out of this
book. You may try to take a stab at it anyway, but the less you know, the more you
should expect to search online on your own. However, if this list does not seem scary
to you, you should be good to go.

About the code
This book contains many examples of source code, both in numbered listings and
inline with normal text. In both cases, the source code is formatted in a fixed-width
font like this to separate it from ordinary text. Sometimes the code is also in bold
to highlight code that has changed from previous steps in the chapter, such as when a
new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts. The code for the examples in
this book is available for download from the Manning website at www.manning.com/
books/gans-in-action and from GitHub at https://github.com/GANs-in-Action/gans-
in-action.

 Throughout this book, we will be using Jupyter notebooks, as it the standard for
data science education. Using Jupyter is also a prerequisite, but for intermediate
Pythonistas, this should be easy to pick up. We are aware that sometimes it may be dif-
ficult to access GPUs or get everything working, especially on Windows. So for some

http://www.manning.com/books/gans-in-action
http://www.manning.com/books/gans-in-action
https://github.com/GANs-in-Action/gans-in-action
https://github.com/GANs-in-Action/gans-in-action


ABOUT THIS BOOK xix
chapters, we also provide Google Colaboratory notebooks (Colab for short), which are
Google’s free platform (available at https://colab.research.google.com) and come
prepackaged with all the essential data science tools as well as a free GPU for a limited
time. You can run all of these lessons straight from your browser! For the other chap-
ters, feel free to upload them to Colab, as the two formats are made to be compatible.

liveBook discussion forum
Purchase of GANs in Action includes free access to a private web forum run by Man-
ning Publications, where you can make comments about the book, ask technical ques-
tions, and receive help from the authors and from other users. To access the forum,
go to https://livebook.manning.com/#!/book/gans-in-action/discussion. You can also
learn more about Manning’s forums and the rules of conduct at https://livebook
.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions lest their interest stray!
The forum and the archives of previous discussions will be accessible from the pub-
lisher’s website as long as the book is in print.

Other online resources
GANs are an active field with excellent (albeit fragmented) resources only a Google
search away. Those with an academic bent can find the latest papers in arXiv (https://
arxiv.org), an online repository of academic e-prints owned and operated by Cornell
University. We hope that this book will equip you with all that is needed to keep up-to-
date on the latest developments in this ever-changing field.

 Both Jakub and Vladimir are active contributors to Medium (particularly the tech-
focused publications Towards Data Science and Hacker Noon), where you can find the
most recent content from the authors.

How this book is organized: a roadmap
GANs in Action strives to provide a balance of theory and practice. The book is orga-
nized into three parts:

PART 1, “INTRODUCTION TO GANS AND GENERATIVE MODELING”

Here, we introduce the foundational concepts behind generative learning and GANs
and implement the most canonical GAN variants:

■ Chapter 1, “Introduction to GANs”—We introduce Generative Adversarial Net-
works (GANs) and provide a high-level explanation of how they work. You will
learn that GANs consist of two separate neural networks (the Generator and the
Discriminator), and the networks are trained through a competitive dynamic.

https://colab.research.google.com
https://livebook.manning.com/#!/book/gans-in-action/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://arxiv.org/
https://arxiv.org/
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The knowledge you will acquire in this chapter will provide the foundation for
the remainder of this book.

■ Chapter 2, “Intro to generative modeling with autoencoders”—We discuss autoencod-
ers, which can be seen as precursors to GANs in many ways. Given the relative
novelty of generative learning, we decided to include a chapter that helps set
GANs in a broader context. This chapter also contains the first code tutorial,
where we will build a variational autoencoder to generate handwritten digits—
the same task we will be exploring in our GAN tutorials in later chapters. How-
ever, if you are already familiar with autoencoders or want to dive straight into
GANs, feel free to skip this chapter. 

■ Chapter 3, “Your first GAN: Generating handwritten digits”—We dive deeper into
the theory behind GANs and adversarial learning. We explore the key differ-
ences between GANs and traditional neural networks: namely, we discuss the
differences in their cost functions and training processes. In a coding tutorial at
the end of the chapter, you will apply what you’ve learned to implement a GAN
in Keras and train it to generate handwritten digits.

■ Chapter 4, “Deep Convolutional GAN”—We introduce convolutional neural net-
works and batch normalization. We then implement Deep Convolutional GAN
(DCGAN), an advanced GAN architecture that uses convolutional networks as
its Generator and Discriminator and takes advantage of batch normalization to
stabilize the training process.

PART 2, “ADVANCED TOPICS IN GANS”

Building on the foundations, we dive deeper into the theory underlying GANs and
implement a selection of advanced GAN architectures:

■ Chapter 5, “Training and common challenges: GANing for success”—We discuss many
of the theoretical and practical hurdles to training GANs and how to overcome
them. We provide a comprehensive overview of the best practices for training a
GAN based on relevant academic papers and presentations. We also cover
options for evaluating GAN performance and why we need to worry about that.

■ Chapter 6, “Progressive growing of GANs”—We explore the Progressive GAN
(PGGAN, or ProGAN), a cutting-edge training methodology for the Generator
and Discriminator. By adding new layers during the training process, the
PGGAN achieves superior image quality and resolution. We explain how it all
works in theory as well as in practice through hands-on code samples and by
using the TensorFlow Hub (TFHub).

■ Chapter 7, “Semi-Supervised GAN”—We continue to explore innovations based on
the core GAN model. You will learn about the enormous practical importance
of improving classification accuracy with only a small subset of labeled training
examples through semi-supervised learning. Then, we implement the Semi-
Supervised GAN (SGAN) and explain how it uses labels to turn the Discrimina-
tor into a robust multiclass classifier. 
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■ Chapter 8, “Conditional GAN”—We present another GAN architecture that uses
labels in training: Conditional GAN (CGAN). Conditional GAN addresses one
of the main shortcomings of generative modeling—the inability to specify
explicitly what example to synthesize—by using labels or other conditioning
information while training its Generator and Discriminator. At the end of the
chapter, we implement a CGAN to see targeted data generation firsthand.

■ Chapter 9, “CycleGAN”—We discuss one of the most interesting GAN architec-
tures: Cycle-Consistent Adversarial Networks (CycleGANs). This technique can
be used to translate one image into another, such as turning a photo of a horse
into a photo of a zebra. We walk through the CycleGAN architecture and
explain its main components and innovations. As a coding tutorial, we then
implement a CycleGAN to convert apples into oranges, and vice versa.

PART 3, “WHERE TO GO FROM HERE”

We discuss how and where we can apply our knowledge of GANs and adversarial
learning:

■ Chapter 10, “Adversarial examples”—We look at adversarial examples, a set of
techniques to intentionally deceive a machine learning model into making a
mistake. We discuss their significance through theory and practical examples
and explore their connection to GANs.

■ Chapter 11, “Practical applications of GANs”—We cover practical applications of
GANs. We explore how to use techniques covered in earlier chapters for real-
world use cases in medicine and fashion. In medicine, we look at how GANs can
be used to augment a small dataset to improve classification accuracy. In fash-
ion, we show how GANs can drive personalization. 

■ Chapter 12, “Looking ahead”—We wrap up our learning journey by summarizing
the key takeaways and discussing the ethical considerations of GANs. We also
mention emerging GAN techniques for those interested in continuing to
explore this field beyond this book. 

About the authors
Jakub Langr is a cofounder of a startup that uses GANs for creative and advertising
applications. Jakub has worked in data science since 2013, most recently as a data sci-
ence tech lead at Filtered.com and as an R&D data scientist at Mudano. He also
designed and teaches data science courses at the University of Birmingham (UK) and
at numerous private companies, and is a guest lecturer at the University of Oxford. He
was an Entrepreneur in Residence at the seventh cohort of deep technology talent
investor Entrepreneur First. Jakub is also a fellow at the Royal Statistical Society and
an invited speaker at various international conferences. He graduated from the Uni-
versity of Oxford. Jakub is donating all of his proceeds from this publication to the
nonprofit British Heart Foundation.

http://Filtered.com
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Vladimir Bok recognized the immense potential of GANs while pursuing an indepen-
dent research project in musical style transfer at Microsoft Research. His work experi-
ence ranges from applied data science at a Y Combinator-backed startup to leading
cross-functional initiatives at Microsoft. Most recently, Vladimir has been managing
data science projects at a New York-based startup that provides machine learning ser-
vices to online travel and e-commerce brands, including Fortune 500 companies.
Vladimir graduated cum laude with a bachelor’s degree in computer science from Har-
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about the cover illustration
Saint-Sauveur

The figure on the cover of GANs in Action is captioned “Bourgeoise de Londre,” or a
bourgeoise woman from London. The illustration was originally issued in 1787 and is
taken from a collection of dress costumes from various countries by Jacques Grasset
de Saint-Sauveur (1757–1810). Each illustration is finely drawn and colored by hand.
The rich variety of Grasset de Saint-Sauveur’s collection vividly reminds us of how cul-
turally distinct the world’s towns and regions were just 200 years ago. Isolated from
each other, people spoke different dialects and languages. In the streets or in the
countryside, it was easy to identify where they lived and what their trade or station in
life was just by their dress.

 The way we dress has changed since then, and the regional diversity, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.
xxiii





Part 1

Introduction to GANs
and generative modeling

Part 1 introduces the world of Generative Adversarial Networks (GANs) and
walks through implementations of the most canonical GAN variants:

■ In chapter 1, you will learn the basics of GANs and develop an intuitive
understanding of how they work.

■ In chapter 2, we will switch gears a little and look at autoencoders, so you
can get a more holistic understanding of generative modeling. Autoen-
coders are some of the most important theoretical and practical precur-
sors to GANs and continue to be widely used to this day.

■ Chapter 3 starts where chapter 1 left off and dives deeper into the theory
underlying GANs and adversarial learning. In this chapter, you will also
implement and train your first, fully functional GAN.

■ Chapter 4 continues your learning journey by exploring the Deep Convo-
lutional GAN (DCGAN). This innovation on top of the original GAN uses
convolutional neural networks to improve the quality of the generated
images.





Introduction to GANs
The notion of whether machines can think is older than the computer itself. In
1950, the famed mathematician, logician, and computer scientist Alan Turing—
perhaps best known for his role in decoding the Nazi wartime enciphering machine,
Enigma—penned a paper that would immortalize his name for generations to
come, “Computing Machinery and Intelligence.”

 In the paper, Turing proposed a test he called the imitation game, better known
today as the Turing test. In this hypothetical scenario, an unknowing observer talks
with two counterparts behind a closed door: one, a fellow human; the other, a com-
puter. Turing reasons that if the observer is unable to tell which is the person and
which is the machine, the computer passed the test and must be deemed intelligent.

 Anyone who has attempted to engage in a dialogue with an automated chatbot
or a voice-powered intelligent assistant knows that computers have a long way to go

This chapter covers 
 An overview of Generative Adversarial Networks

 What makes this class of machine learning 
algorithms special

 Some of the exciting GAN applications that this 
book covers
3



4 CHAPTER 1 Introduction to GANs
to pass this deceptively simple test. However, in other tasks, computers have not only
matched human performance but also surpassed it—even in areas that were until
recently considered out of reach for even the smartest algorithms, such as superhu-
manly accurate face recognition or mastering the game of Go.1

 Machine learning algorithms are great at recognizing patterns in existing data and
using that insight for tasks such as classification (assigning the correct category to an
example) and regression (estimating a numerical value based on a variety of inputs).
When asked to generate new data, however, computers have struggled. An algorithm
can defeat a chess grandmaster, estimate stock price movements, and classify whether
a credit card transaction is likely to be fraudulent. In contrast, any attempt at making
small talk with Amazon’s Alexa or Apple’s Siri is doomed. Indeed, humanity’s most
basic and essential capacities—including a convivial conversation or the crafting of
an original creation—can leave even the most sophisticated supercomputers in digi-
tal spasms.

 This all changed in 2014 when Ian Goodfellow, then a PhD student at the Univer-
sity of Montreal, invented Generative Adversarial Networks (GANs). This technique
has enabled computers to generate realistic data by using not one, but two, separate
neural networks. GANs were not the first computer program used to generate data,
but their results and versatility set them apart from all the rest. GANs have achieved
remarkable results that had long been considered virtually impossible for artificial sys-
tems, such as the ability to generate fake images with real-world-like quality, turn a
scribble into a photograph-like image, or turn video footage of a horse into a running
zebra—all without the need for vast troves of painstakingly labeled training data.

 A telling example of how far machine data generation has been able to advance
thanks to GANs is the synthesis of human faces, illustrated in figure 1.1. As recently as

1 See “Surpassing Human-Level Face Verification Performance on LFW with GaussianFace,” by Chaochao Lu
and Xiaoou Tang, 2014, https://arXiv.org/abs/1404.3840. See also the New York Times article “Google’s
AlphaGo Defeats Chinese Go Master in Win for A.I.,” by Paul Mozur, 2017, http://mng.bz/07WJ.

2014 2015 2016 2017

Figure 1.1 Progress in human face generation 
(Source: “The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation,” by Miles Brundage et al., 
2018, https://arxiv.org/abs/1802.07228.) 

http://arxiv.org/abs/1404.3840
https://shortener.manning.com/07WJ
https://arxiv.org/abs/1802.07228
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2014, when GANs were invented, the best that machines could produce was a blurred
countenance—and even that was celebrated as a groundbreaking success. By 2017,
just three years later, advances in GANs enabled computers to synthesize fake faces
whose quality rivals high-resolution portrait photographs. In this book, we look under
the hood of the algorithm that made all this possible.

1.1 What are Generative Adversarial Networks?
Generative Adversarial Networks (GANs) are a class of machine learning techniques that
consist of two simultaneously trained models: one (the Generator) trained to generate
fake data, and the other (the Discriminator) trained to discern the fake data from real
examples.

 The word generative indicates the overall purpose of the model: creating new data.
The data that a GAN will learn to generate depends on the choice of the training set.
For example, if we want a GAN to synthesize images that look like Leonardo da
Vinci’s, we would use a training dataset of da Vinci’s artwork. 

 The term adversarial points to the game-like, competitive dynamic between the
two models that constitute the GAN framework: the Generator and the Discrimina-
tor. The Generator’s goal is to create examples that are indistinguishable from the
real data in the training set. In our example, this means producing paintings that
look just like da Vinci’s. The Discriminator’s objective is to distinguish the fake exam-
ples produced by the Generator from the real examples coming from the training
dataset. In our example, the Discriminator plays the role of an art expert assessing
the authenticity of paintings believed to be da Vinci’s. The two networks are continu-
ally trying to outwit each other: the better the Generator gets at creating convincing
data, the better the Discriminator needs to be at distinguishing real examples from
the fake ones. 

 Finally, the word networks indicates the class of machine learning models most com-
monly used to represent the Generator and the Discriminator: neural networks.
Depending on the complexity of the GAN implementation, these can range from sim-
ple feed-forward neural networks (as you’ll see in chapter 3) to convolutional neural
networks (as you’ll see in chapter 4) or even more complex variants, such as the U-Net
(as you’ll see in chapter 9).

1.2 How do GANs work?
The mathematics underpinning GANs are complex (as you’ll explore in later chap-
ters, especially chapters 3 and 5); fortunately, many real-world analogies can make
GANs easier to understand. Previously, we discussed the example of an art forger (the
Generator) trying to fool an art expert (the Discriminator). The more convincing the
fake paintings the forger makes, the better the art expert must be at determining their
authenticity. This is true in the reverse situation as well: the better the art expert is at
telling whether a particular painting is genuine, the more the forger must improve to
avoid being caught red-handed. 
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 Another metaphor often used to describe GANs—one that Ian Goodfellow him-
self likes to use—is that of a criminal (the Generator) who forges money, and a
detective (the Discriminator) who tries to catch him. The more authentic-looking
the counterfeit bills become, the better the detective must be at detecting them, and
vice versa.

 In more technical terms, the Generator’s goal is to produce examples that capture
the characteristics of the training dataset, so much so that the samples it generates
look indistinguishable from the training data. The Generator can be thought of as an
object recognition model in reverse. Object recognition algorithms learn the patterns in
images to discern an image’s content. Instead of recognizing the patterns, the Gener-
ator learns to create them essentially from scratch; indeed, the input into the Genera-
tor is often no more than a vector of random numbers.

 The Generator learns through the feedback it receives from the Discriminator’s
classifications. The Discriminator’s goal is to determine whether a particular example
is real (coming from the training dataset) or fake (created by the Generator). Accord-
ingly, each time the Discriminator is fooled into classifying a fake image as real, the
Generator knows it did something well. Conversely, each time the Discriminator cor-
rectly rejects a Generator-produced image as fake, the Generator receives the feed-
back that it needs to improve.

 The Discriminator continues to improve as well. Like any classifier, it learns from
how far its predictions are from the true labels (real or fake). So, as the Generator
gets better at producing realistic-looking data, the Discriminator gets better at tell-
ing fake data from the real, and both networks continue to improve simultaneously.

 Table 1.1 summarizes the key takeaways about the two GAN subnetworks.

1.3 GANs in action
Now that you have a high-level understanding of GANs and their constituent net-
works, let’s take a closer look at the system in action. Imagine that our goal is to teach
a GAN to produce realistic-looking handwritten digits. (You’ll learn to implement

Table 1.1 Generator and Discriminator subnetworks

Generator Discriminator

Input A vector of random numbers The Discriminator receives input from two sources:

 Real examples coming from the training dataset
 Fake examples coming from the Generator

Output Fake examples that strive to be as con-
vincing as possible

Predicted probability that the input example is real

Goal Generate fake data that is indistinguish-
able from members of the training 
dataset

Distinguish between the fake examples coming 
from the Generator and the real examples coming 
from the training dataset
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such a model in chapter 3 and expand on it in chapter 4.) Figure 1.2 illustrates the
core GAN architecture.

Let’s walk through the details of the diagram:

1 Training dataset—The dataset of real examples that we want the Generator to learn
to emulate with near-perfect quality. In this case, the dataset consists of images of
handwritten digits. This dataset serves as input (x) to the Discriminator network.

2 Random noise vector—The raw input (z) to the Generator network. This input is
a vector of random numbers that the Generator uses as a starting point for syn-
thesizing fake examples.

3 Generator network—The Generator takes in a vector of random numbers (z) as
input and outputs fake examples (x*). Its goal is to make the fake examples it
produces indistinguishable from the real examples in the training dataset.

4 Discriminator network—The Discriminator takes as input either a real example
(x) coming from the training set or a fake example (x*) produced by the Gen-
erator. For each example, the Discriminator determines and outputs the proba-
bility of whether the example is real.

5 Iterative training/tuning—For each of the Discriminator’s predictions, we deter-
mine how good it is—much as we would for a regular classifier—and use the
results to iteratively tune the Discriminator and the Generator networks through
backpropagation:

1.

4.

Discriminator

Generator

Classification
error

Iteratively train

Iteratively train

x

z

x*

3.

2.

5.

Figure 1.2 The two GAN subnetworks, their inputs and outputs, and their interactions
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– The Discriminator’s weights and biases are updated to maximize its classifica-
tion accuracy (maximizing the probability of correct prediction: x as real and
x* as fake).

– The Generator’s weights and biases are updated to maximize the probability
that the Discriminator misclassifies x* as real.

1.3.1 GAN training

Learning about the purpose of the various GAN components may feel like looking
at a snapshot of an engine: it cannot be understood fully until we see it in motion.
That’s what this section is all about. First, we present the GAN training algorithm;
then, we illustrate the training process so you can see the architecture diagram in
action.

GAN TRAINING VISUALIZED

Figure 1.3 illustrates the GAN training algorithm. The letters in the diagram refer to
the list of steps in the GAN training algorithm.

 
 
 
 

GAN training algorithm
For each training iteration do

1 Train the Discriminator:

a Take a random real example x from the training dataset.
b Get a new random noise vector z and, using the Generator network, syn-

thesize a fake example x*.
c Use the Discriminator network to classify x and x*. 
d Compute the classification errors and backpropagate the total error to

update the Discriminator’s trainable parameters, seeking to minimize the
classification errors.

2 Train the Generator:

a Get a new random noise vector z and, using the Generator network, syn-
thesize a fake example x*.

b Use the Discriminator network to classify x*.
c Compute the classification error and backpropagate the error to update

the Generator’s trainable parameters, seeking to maximize the Discrimina-
tor’s error.

End for
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x

x*

1.Train the Discriminator

Repeat for each iteration

Discriminator

Generator

(a) (c) and (d)

(b)

Classification
error

z

Discriminator

Generator

(b) and (c)

(a)

Classification
error

z

2.Train the Generator

x

x*

Figure 1.3 The GAN training algorithm has two main parts. These two parts, Discriminator training and 
Generator training, depict the same GAN network at different time snapshots in the corresponding 
stages of the training process.
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Subdiagram legend
1 Train the Discriminator:

a Take a random real example x from the training dataset.
b Get a new random noise vector z and, using the Generator network, syn-

thesize a fake example x*. 
c Use the Discriminator network to classify x and x*. 
d Compute the classification errors and backpropagate the total error to

update the Discriminator weights and biases, seeking to minimize the clas-
sification errors.

2 Train the Generator:

Discriminator

Generator

(a) (c) and (d)

(b)

Classification
error

z

x

x*

x

x*

Discriminator

Generator

(b) and (c)

(a)

Classification
error

z
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1.3.2 Reaching equilibrium

You may wonder when the GAN training loop is meant to stop. More precisely, how do
we know when a GAN is fully trained so that we can determine the appropriate num-
ber of training iterations? With a regular neural network, we usually have a clear
objective to achieve and measure. For example, when training a classifier, we measure
the classification error on the training and validation sets, and we stop the process
when the validation error starts getting worse (to avoid overfitting). In a GAN, the two
networks have competing objectives: when one network gets better, the other gets
worse. How do we determine when to stop?

 Those familiar with game theory may recognize this setup as a zero-sum game—a sit-
uation in which one player’s gains equal the other player’s losses. When one player
improves by a certain amount, the other player worsens by the same amount. All zero-
sum games have a Nash equilibrium, a point at which neither player can improve their
situation or payoff by changing their actions.

 GAN reaches Nash equilibrium when the following conditions are met: 

 The Generator produces fake examples that are indistinguishable from the real
data in the training dataset.

 The Discriminator can at best randomly guess whether a particular example is
real or fake (that is, make a 50/50 guess whether an example is real).

NOTE Nash equilibrium is named after the American economist and mathe-
matician John Forbes Nash Jr., whose life story and career were captured in
the biography titled A Beautiful Mind and inspired the eponymous film.

Let us convince you of why this is the case. When each of the fake examples (x*) is
truly indistinguishable from the real examples (x) coming from the training dataset,
there is nothing the Discriminator can use to tell them apart from one another.
Because half of the examples it receives are real and half are fake, the best the Dis-
criminator can do is to flip a coin and classify each example as real or fake with 50%
probability.

 The Generator is likewise at a point where it has nothing to gain from further tun-
ing. Because the examples it produces are already indistinguishable from the real
ones, even a tiny change to the process it uses to turn the random noise vector (z) into
a fake example (x*) may give the Discriminator a cue for how to discern the fake
example from the real data, making the Generator worse off.

a Get a new random noise vector z and, using the Generator network, syn-
thesize a fake example x*.

b Use the Discriminator network to classify x*. 
c Compute the classification error and backpropagate the error to update

the Generator weights and biases, seeking to maximize the Discrimina-
tor’s error.
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 With equilibrium achieved, GAN is said to have converged. Here is when it gets
tricky. In practice, it is nearly impossible to find the Nash equilibrium for GANs
because of the immense complexities involved in reaching convergence in noncon-
vex games (more on convergence in later chapters, particularly chapter 5). Indeed,
GAN convergence remains one of the most important open questions in GAN
research.

 Fortunately, this has not impeded GAN research or the many innovative applica-
tions of generative adversarial learning. Even in the absence of rigorous mathemati-
cal guarantees, GANs have achieved remarkable empirical results. This book covers
a selection of the most impactful ones, and the following section previews some
of them.

1.4 Why study GANs?
Since their invention, GANs have been hailed by academics and industry experts as
one of the most consequential innovations in deep learning. Yann LeCun, the direc-
tor of AI research at Facebook, went so far as to say that GANs and their variations are
“the coolest idea in deep learning in the last 20 years.”2 

 The excitement is well justified. Unlike other advancements in machine learning
that may be household names among researchers but would elicit no more than a
quizzical look from anyone else, GANs have captured the imagination of researchers
and the wider public alike. They have been covered by the New York Times, the BBC,
Scientific American, and many other prominent media outlets. Indeed, it was one of
those exciting GAN results that probably drove you to buy this book in the first
place. (Right?)

 Perhaps most notable is the capacity of GANs to create hyperrealistic imagery.
None of the faces in figure 1.4 belongs to a real human; they are all fake, showcasing
GANs’ ability to synthesize images with photorealistic quality. The faces were pro-
duced using Progressive GANs, a technique covered in chapter 6.

 Another remarkable GAN achievement is image-to-image translation. Similarly to the
way a sentence can be translated from, say, Chinese to Spanish, GANs can translate an
image from one domain to another. As shown in figure 1.5, GANs can turn an image
of a horse into an image of zebra (and back!), and a photo into a Monet-like paint-
ing—all with virtually no supervision and no labels whatsoever. The GAN variant that
made this possible is called CycleGAN; you’ll learn all about it in chapter 9.

 The more practically minded GAN use cases are just as fascinating. The online
giant Amazon is experimenting with harnessing GANs for fashion recommendations:
by analyzing countless outfits, the system learns to produce new items matching any
given style.3 In medical research, GANs are used to augment datasets with synthetic

2 See “Google’s Dueling Neural Networks Spar to Get Smarter,” by Cade Metz, Wired, 2017, http://mng.bz/
KE1X.

3 See “Amazon Has Developed an AI Fashion Designer,” by Will Knight, MIT Technology Review, 2017, http://
mng.bz/9wOj.

https://shortener.manning.com/KE1X
https://shortener.manning.com/KE1X
https://shortener.manning.com/KE1X
https://shortener.manning.com/9wOj
https://shortener.manning.com/9wOj
https://shortener.manning.com/9wOj
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Figure 1.4 These photorealistic but fake human faces were synthesized by a Progressive 
GAN trained on high-resolution portrait photos of celebrities. 
(Source: “Progressive Growing of GANs for Improved Quality, Stability, and Variation,” by Tero Karras et al., 2017, 
https://arxiv.org/abs/1710.10196.)

Monet Photos

Monet

MonetPhoto

Photo

Zebras

Zebra

Zebra

Horses

Horse

Horse

Figure 1.5 By using a GAN variant called CycleGAN, we can turn a Monet painting into a photograph or turn an 
image of a zebra into a depiction of a horse, and vice versa. 
(Source: See “Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks,” by Jun-Yan Zhu et al., 2017, 
https://arxiv.org/abs/1703.10593.)

https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1703.10593


14 CHAPTER 1 Introduction to GANs
examples to improve diagnostic accuracy.4 In chapter 11—after you’ve mastered the
ins and outs of training GANs and their variants—you’ll explore both of these applica-
tions in detail.

 GANs are also seen as an important stepping stone toward achieving artificial gen-
eral intelligence,5 an artificial system capable of matching human cognitive capacity to
acquire expertise in virtually any domain—from motor skills involved in walking, to
language, to creative skills needed to compose sonnets. 

 But with the ability to generate new data and imagery, GANs also have the capacity
to be dangerous. Much has been discussed about the spread and dangers of fake news,
but the potential of GANs to create credible fake footage is disturbing. At the end of
an aptly titled 2018 piece about GANs—“How an A.I. ‘Cat-and-Mouse Game’ Gener-
ates Believable Fake Photos”—the New York Times journalists Cade Metz and Keith Col-
lins discuss the worrying prospect of GANs being exploited to create and spread
convincing misinformation, including fake video footage of statements by world lead-
ers. Martin Giles, the San Francisco bureau chief of MIT Technology Review, echoes
their concern and mentions another potential risk in his 2018 article “The GANfather:
The Man Who’s Given Machines the Gift of Imagination”: in the hands of skilled
hackers, GANs can be used to intuit and exploit system vulnerabilities at an unprece-
dented scale. These concerns are what motivated us to discuss the ethical consider-
ations of GANs in chapter 12.

 GANs can do much good for the world, but all technological innovations have mis-
uses. Here the philosophy has to be one of awareness: because it is impossible to
“uninvent” a technique, it is crucial to make sure people like you are aware of this
technique’s rapid emergence and its substantial potential.

 In this book, we are only able to scratch the surface of what is possible with GANs.
However, we hope that this book will provide you with the necessary theoretical knowl-
edge and practical skills to continue exploring any facet of this field that you find
most interesting.

 So, without further ado, let’s dive in!

4 See “Synthetic Data Augmentation Using GAN for Improved Liver Lesion Classification,” by Maayan Frid-Adar
et al., 2018, https://arxiv.org/abs/1801.02385.

5 See “OpenAI Founder: Short-Term AGI Is a Serious Possibility,” by Tony Peng, Synced, 2018, http://mng.bz/
j5Oa. See also “A Path to Unsupervised Learning Through Adversarial Networks,” by Soumith Chintala,
f Code, 2016, http://mng.bz/WOag.

https://shortener.manning.com/j5Oa
https://shortener.manning.com/j5Oa
https://shortener.manning.com/j5Oa
https://shortener.manning.com/WOag
https://arxiv.org/abs/1801.02385
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Summary
 GANs are a deep learning technique that uses a competitive dynamic between

two neural networks to synthesize realistic data samples, such as fake photoreal-
istic imagery. The two networks that constitute a GAN are as follows: 
– The Generator, whose goal is to fool the Discriminator by producing data

indistinguishable from the training dataset
– The Discriminator, whose goal is to correctly distinguish between real data com-

ing from the training dataset and the fake data produced by the Generator
 GANs have extensive applications across many different sectors, such as fashion,

medicine, and cybersecurity. 



Intro to generative
modeling with autoencoders
I dedicate this chapter to my grandmother, Aurelie Langrova, who passed away as we
were finishing the work on it. She will be missed dearly. 

—Jakub

 
 
 

This chapter covers
 Encoding data into a latent space (dimensionality 

reduction) and subsequent dimensionality 
expansion

 Understanding the challenges of generative 
modeling in the context of a variational 
autoencoder

 Generating handwritten digits by using Keras and 
autoencoders

 Understanding the limitations of autoencoders 
and motivations for GANs
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You might be wondering why we chose to include this chapter in the book. There are
three core reasons:

 Generative models are a new area for most.
Most people who come across machine learning typically become exposed to
classification tasks in machine learning first and more extensively—perhaps
because they tend to be more straightforward. Generative modeling, through
which we are trying to produce a new example that looks realistic, is therefore
less understood. So we decided to include a chapter that covers generative
modeling in an easier setting before delving into GANs, especially given the
wealth of resources and research on autoencoders—GANs’ closest precursor.
But if you want to dive straight into the new and exciting bits, feel free to skip
this chapter.

 Generative models are very challenging.
Because generative modeling has been underrepresented, most people are
unaware of what a typical model looks like and its challenges. Although autoen-
coders are in many ways closer to the models that are most commonly taught
(such as an explicit objective function, as we will discuss later), they still present
many challenges that GANs face—such as how difficult it is to evaluate sample
quality. Chapter 5 covers this in more depth.

 Generative models are an important part of the literature today.
Autoencoders themselves have their own uses, as we discuss in this chapter.
They are also still an active area of research, even state of the art in some areas,
and are used explicitly by many GAN architectures. Other GAN architectures
use them as implicit inspiration or a mental model—such as CycleGAN, cov-
ered in chapter 9. 

2.1 Introduction to generative modeling
You should be familiar with how deep learning takes raw pixels and turns them into,
for example, class predictions. For example, we can take three matrixes that contain
pixels of an image (one for each color channel) and pass them through a system of
transformations to get a single number at the end. But what if we want to go in the
opposite direction? 

 We start with a prescription of what we want to produce and get the image at the
other end of the transformations. That is generative modeling in its simplest, most infor-
mal form; we add more depth throughout the book.

 A bit more formally, we take a certain prescription (z)—for this simple case, let’s
say it is a number between 0 and 9—and try to arrive at a generated sample (x*).
Ideally, this x* would look as realistic as another real sample, x. The prescription, z,
lives in a latent space and serves as an inspiration so that we do not always get the
same output, x*. This latent space is a learned representation—hopefully meaningful
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to people in ways we think of it (“disentangled”). Different models will learn a dif-
ferent latent representation of the same data.

 The random noise vector we saw in chapter 1 is often referred to as a sample from the
latent space. Latent space is a simpler, hidden representation of a data point. In our con-
text, it is denoted by z, and simpler just means lower-dimensional—for example, a vector
or array of 100 numbers rather than the 768 that is the dimensionality of the samples we
will use. In many ways, a good latent representation of a data point will allow you to
group things that are similar in this space. We will get to what latent means in the context
of an autoencoder in figure 2.3 and show you how this affects our generated samples in
figures 2.6 and 2.7, but before we can do that, we’ll describe how autoencoders function.

2.2 How do autoencoders function on a high level?
As their name suggests, autoencoders help us encode data, well, automatically. Autoen-
coders are composed of two parts: encoder and decoder. For the purposes of this
explanation, let’s consider one use case: compression.

 Imagine that you are writing a letter to your grandparents about your career as a
machine learning engineer. You have only one page to explain everything that you do
so that they understand, given their knowledge and beliefs about the world. 

 Now imagine that your grandparents suffer from acute amnesia and do not
remember what you do at all. This already feels a lot harder, doesn’t it? This may be
because now you have to explain all the terminology. For example, they can still read and
understand basic things in your letter, such as your description of what your cat did,
but the notion of a machine learning engineer might be alien to them. In other
words, their learned transformations from latent space z into x* has been (almost)
randomly initialized. You have to first retrain these mental structures in their heads
before you can explain. You have to train their autoencoder by passing in concepts x
and seeing whether they manage to reproduce them (x*) back to you in a meaningful
way. That way, you can measure their error, called the reconstruction loss (|| x – x* ||).

 Implicitly, we compress data—or information—every day so we do not spend ages
explaining known concepts. Human communication is full of autoencoders, but they are
context-dependent: what we explain to our grandparents, we do not have to explain to
our engineering colleagues, such as what a machine learning model is. So some human
latent spaces are more appropriate than others, depending on the context. We can just
jump to the succinct representation that their autoencoder will already understand.

 We can compress, because it is useful to simplify certain recurring concepts into
abstractions that we have agreed on—for example, a job title. Autoencoders can sys-
tematically and automatically uncover these information-efficient patterns, define
them, and use them as shortcuts to increase the information throughput. As a result,
we need to transmit only the z, which is typically much lower-dimensional, thereby sav-
ing us bandwidth.

 From an information theory point of view, you are trying to pass as much informa-
tion through the “information bottleneck” (your letter or spoken communication) as
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possible without sacrificing too much of the understanding. You can almost imagine
this as a secret shortcut that only you and your family understand but that has been
optimized for the topics you frequently discussed.1 For simplicity and to focus on com-
pression, we chose to ignore the fact that words are an explicit model, although most
words also have tremendous context-dependent complexity behind them.

DEFINITION The latent space is the hidden representation of the data. Rather
than expressing words or images (for example, machine learning engineer in our
example, or JPEG codec for images) in their uncompressed versions, an auto-
encoder compresses and clusters them based on its understanding of the data.

2.3 What are autoencoders to GANs?
One of the key distinctions with autoencoders is that we end-to-end train the whole
network with one loss function, whereas GANs have distinct loss functions for the
Generator and the Discriminator. Let’s now look at the context in which autoencod-
ers sit compared to GANs. As you can see in figure 2.1, both are generative models
that are subsets of artificial intelligence (AI) and machine learning (ML). In the case

1 In fact, the Rothschilds, a famous European financier family, did this in their letters, which is why they were
so successful in finance.

Artificial intelligence

Machine learning

Explicit
objective
function

Implicit
objective
function

Variational

autoencoder

Generative

adversarial

networks

Generative
models

Figure 2.1 Placing GANs and autoencoders in the AI landscape. Different researchers might 
draw this differently, but we will leave this argument to academics.
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of autoencoders (or their variational alternative, VAEs), we have an explicitly written
function that we are trying to optimize (a cost function); but in the case of GANs (as
you will learn), we do not have an explicit metric as simple as mean squared error,
accuracy, or area under the ROC curve to optimize.2 GANs instead have two compet-
ing objectives that cannot be written in one function.

2.4 What is an autoencoder made of?
As we look at the structure of an autoencoder, we’ll use images as an example, but this
structure also applies in other cases (for instance, language, as in our example about the
letter to your grandparents). Like many advancements in machine learning, the high-level
idea of autoencoders is intuitive and follows these simple steps, illustrated in figure 2.2: 

1 Encoder network: We take a representation x (for example, an image) and then
reduce the dimension from y to z by using a learned encoder (typically, a one-
or many-layer neural network).

2 A cost function (also known as a loss function or objective function) is what we are trying to optimize/minimize for.
In statistics, for example, this would be the root mean squared error (RMSE). The root mean squared error
(RMSE) is a mathematical function that gives an error by taking the root of the square of the difference
between the true value of an example and our prediction.

In statistics, we typically want to evaluate a classifier across several combinations of false positives and nega-
tives. The area under the curve (AUC) helps us do that. For more details, Wikipedia has an excellent explanation,
as this concept is beyond the scope of this book.

Latent space
of size z
(step 2)

Output
or

“decompression”
or

“reconstruction”
(step 3)

Encoder
or

“compression”
network
(step 1)

x*:
Output

as vector
of size y

x:
Image

as vector
of size y

x z x*

Figure 2.2 Using an autoencoder in our letter example follows these 
steps: (1) You compress all the things you know about a machine 
learning engineer, and then (2) compose that to the latent space (letter 
to your grandmother). When she, using her understanding of words as a 
decoder (3), reconstructs a (lossy) version of what that means, you get 
out a representation of an idea in the same space (in your grandmother’s 
head) as the original input, which was your thoughts.
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2 Latent space (z): As we train, here we try to establish the latent space to have
some meaning. Latent space is typically a representation of a smaller dimension
and acts as an intermediate step. In this representation of our data, the autoen-
coder is trying to “organize its thoughts.”

3 Decoder network: We reconstruct the original object into the original dimen-
sion by using the decoder. This is typically done by a neural network that is a
mirror image of the encoder. This is the step from z to x*. We apply the reverse
process of the encoding to get back, for example, a 784 pixel-values long recon-
structed vector (of a 28 × 28 image) from the 256 pixel-values long vector of the
latent space.

Here’s an example of autoencoder training: 

1 We take images x and feed them through the autoencoder.
2 We get out x*, reconstruction of the images.
3 We measure the reconstruction loss—the difference between x and x*.

– This is done using a distance (for example, mean average error) between the
pixels of x and x*.

– This gives us an explicit objective function ( || x –x* || ) to optimize via a ver-
sion of gradient descent.

So we are trying to find the parameters of the encoder and the decoder that would
minimize the reconstruction loss that we update by using gradient descent.

 And that’s it! We’re done. Now you may be wondering why this is useful or import-
ant. You’d be surprised! 

2.5 Usage of autoencoders
Despite their simplicity, there are many reasons to care about autoencoders:

 First of all, we get compression for free! This is because the intermediate step
(2) from figure 2.2 becomes an intelligently reduced image or object at the
dimensionality of the latent space. Note that in theory, this can be orders of
magnitude less than the original input. It obviously is not lossless, but we are
free to use this side effect, if we wish.

 Still using the latent space, we can think of many practical applications, such as
a one-class classifier (an anomaly-detection algorithm), where we can see the
items in a reduced, more quickly searchable latent space to check for similarity
with the target class. This can work in search (information retrieval) or anomaly-
detection settings (comparing closeness in the latent space).

 Another use case is data denoising or colorization of black-and-white images.3

For example, if we have an old photo or video or a very noisy one—say, World

3 For more information on coloring black-and-white images, see Emil Wallner’s “Coloring Greyscale Images,”
on GitHub (http://mng.bz/6jWy).

https://shortener.manning.com/6jWy
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War II images—we can make them less noisy and add color back in. Hence the
similarity to GANs, which also tend to excel at these types of applications.

 Some GANs architectures—such as BEGAN4—use autoencoders as part of their
architecture to help them stabilize their training, which is critically important,
as you will discover later.

 Training of these autoencoders does not require labeled data. We will get to this
and why unsupervised learning is so important in the next section. This makes
our lives a lot easier, because it is only self-training and does not require us to
look for labels.

 Last, but definitely not least, we can use autoencoders to generate new images.
Autoencoders have been applied to anything from digits to faces to bedrooms,
but usually the higher the resolution of the image, the worse the performance,
as the output tends to look blurry. But for the MNIST dataset—as you will dis-
cover later—and other low-resolution images, autoencoders work great; you’ll
see what the code looks like in just a moment!

DEFINITION The Modified National Institute of Standards and Technology (MNIST)
database is a dataset of handwritten digits. Wikipedia has a great overview of
this extremely popular dataset used in computer vision literature.

So all of these things can be done just because we found a new representation of the
data we already had. This representation is useful because it brings out the core infor-
mation, which is natively compressed, but it’s also easier to manipulate or generate
new data based on the latent representation! 

2.6 Unsupervised learning
In the previous chapter, we already talked about unsupervised learning without using
the term. In this section, we’ll take a closer look.

DEFINITION Unsupervised learning is a type of machine learning in which we
learn from the data itself without additional labels as to what this data means.
Clustering, for example, is unsupervised—because we are just trying to dis-
cover the underlying structure of the data; but anomaly detection is usually
supervised, as we need human-labeled anomalies.

In this chapter, you will learn why unsupervised machine learning is different: we can
use any data without having to label it for a specific purpose. We can throw in all images
from the internet without having to annotate the data about the purpose of each sam-
ple, for each representation that we might care about. For example: Is there a dog in this
picture? A car? 

 In supervised learning, on the other hand, if you don't have labels for that exact
task, (almost) all of your labels could be unusable. If you’re trying to make a classifier

4 BEGAN is an acronym for Boundary Equilibrium Generative Adversarial Networks. This interesting GAN
architecture was one of the first to use an autoencoder as part of the setup. 
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that would classify cars from Google Street View, but you do not have labels of those
images for animals as well, training a classifier that would classify animals with the
same dataset would be basically impossible. Even if the animals frequently feature in
these samples, you would need to go back and ask your labelers to relabel the same
Google Street View dataset for animals.

 In essence, we need to think about the application of the data before we know the
use case, which is difficult! But for a lot of compression-type tasks, you always have
labeled data: your data. Some researchers, such as François Chollet (research scientist
at Google and author of Keras), call this type of machine learning self-supervised. For
much of this book, our only labels will be either the examples themselves or any other
examples from the dataset. 

 Since our training data also acts as our labels, training many of these algorithms
becomes far easier from one crucial perspective: we now have lots more data to work
with, and we do not need to wait weeks and pay millions for enough labeled data.

2.6.1 New take on an old idea

Autoencoders themselves are a fairly old idea—at least when you look at the age of
machine learning as a field. But seeing as everyone is working on something deep
today, it should surprise exactly no one that people have successfully applied deep
learning as part of both encoder and decoder.

 An autoencoder is composed of two neural networks: an encoder and a decoder.
In our case, both have activation functions,5 and we will be using just one intermedi-
ate layer for each. This means we have two weight matrices in each network—one
from input to intermediate and then one from intermediate to latent. Then again, we
have one from latent to different intermediate and then one from intermediate to
output. If we had just one weight matrix in each, our procedure would resemble a
well-established analytical technique called principal component analysis (PCA). If you
have a background in linear algebra, you should be in broadly familiar territory. 

NOTE Some technical differences exist in how the solutions are learned—for
example, PCA is numerically deterministic, whereas autoencoders are typi-
cally trained with a stochastic optimizer. There are also differences in the
final form of the solution. But we’re not going to give you a lecture about how
one of them gives you an orthonormal basis and how fundamentally they still
span the same vector space—though if you happen to know what that means,
then more power to you.

5 We feed any output from an earlier layer’s computation through an activation function before passing it to the
next one. Frequently, people pick a rectified linear unit (ReLU)—which is defined as max(0, x). We don’t go
into too much depth on activation functions, because they alone could be a subject of a lengthy blog post.
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2.6.2 Generation using an autoencoder

At the beginning of this chapter, we said that autoencoders can be used to generate
data. Some of you who are really keen may have been thinking about the use of the
latent space and whether it can be repurposed for something else . . . and it totally can!
(If you got this right, you can give yourself an official, approved self-five!) 

 But you probably didn’t buy this book to look silly, so let’s get to the point. If we go
back to the example with your grandparents and apply a slightly different lens, using
autoencoders as a generative model might start to make sense. For example, imagine
that your idea of what a job is becomes the input to the decoder network. Think of the
word job written down on the piece of paper as the latent space input, and the idea of
a job in your grandparents’ head as the output. 

 In this case, we see that the latent space encoding (a written word, combined with
your grandparents’ ability to read and understand concepts) becomes a generative
model that generates an idea in their heads. The written letter acts as an inspiration or
some sort of latent vector, and the output—the ideas—are in the same high-dimensional
space as the original input. Your grandparents’ ideas are as complex—albeit slightly
different—as yours. 

 Now let’s switch back to the domain of images. We train our autoencoder on a set of
images. So we tune the parameters of the encoder and the decoder to find appropriate
parameters for the two networks. We also get a sense for the way the examples are repre-
sented in the latent space. For generation, we cut off the encoder part and use only the
latent space and the decoder. Figure 2.3 shows a schematic of the generation process.

Reshape

DecoderEncoder Random
sample
(in the

latent space)

Step 1
(dimensionality Z)

Step 2
(784 1)�

Step 3
(28 28)�

Figure 2.3 Because we know from training where our examples get placed in the 
latent space, we can easily generate examples similar to the ones that the model has 
seen. Even if not, we can easily iterate or grid-search through the latent space to 
determine the kinds of representations that our model can generate. 
(Image adapted from Mat Leonard’s simple autoencoder project on GitHub, http://mng.bz/oNXM.)

https://shortener.manning.com/oNXM
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2.6.3 Variational autoencoder

You may be wondering: what is the difference between a variational autoencoder and
a “regular” one? It all has to do with the magical latent space. In the case of a varia-
tional autoencoder, we choose to represent the latent space as a distribution with a
learned mean and standard deviation rather than just a set of numbers. Typically, we
choose multivariate Gaussian, but exactly what that is or why we choose this distribu-
tion over another is not that important right now. If you would like a refresher on
what that might look like, take a look at figure 2.5.

 As the more statistically inclined of you may have realized at this point, the varia-
tional autoencoder is a technique based on Bayesian machine learning. In practice,
this means we have to learn the distribution, which adds further constraints. In other
words, frequentist autoencoders would try to learn the latent space as an array of num-
bers, but Bayesian—for example, variational—autoencoders would try to find the
right parameters defining a distribution.

 We then sample from the latent distribution and get some numbers. We feed these
numbers through the decoder. We get back an example that looks like something
from the original dataset, except it has been newly created by the model. Ta-da! 

2.7 Code is life
In this book, we use a popular, deep learning, high-level API called Keras. We highly
suggest that you familiarize yourself with it. If you are not already comfortable with it,
plenty of good free resources are available online, including outlets such as Towards
Data Science (http://towardsdatascience.com), where we frequently contribute. If
you want to learn more about Keras from a book, several good resources exist, includ-
ing another great Manning book, Deep Learning with Python by François Chollet—the
author and creator of Keras. 

 Keras is a high-level API for several deep learning frameworks—TensorFlow, Mic-
rosoft Cognitive Toolkit (CNTK), and Theano. It is easy to use and allows you to work
on a much higher level of abstraction, so you can focus on the concepts rather than
recording every standard block of multiplication, biasing, activation, and then pool-
ing6 or having to worry about variable scopes too much.

 To show the true power of Keras and how it simplifies the process of writing a neu-
ral network, we will look at the variational autoencoder example in its simplest form.7

In this tutorial, we use the functional API that Keras has for a more function-oriented
approach to writing deep learning code, but we will show you the sequential API (the
other way) in later tutorials as things get more difficult.

 The goal of this exercise is to generate handwritten digits based on the latent
space. We are going to create an object, generator or decoder, that can use the

6 A pooling block is an operation on a layer that allows us to pool several inputs into fewer—for example, having
a matrix of four numbers and getting the maximum value as a single number. This is a common operation in
computer vision to reduce complexity.

7 This example was highly modified by the authors for simplicity, from http://mng.bz/nQ4K.

http://towardsdatascience.com
https://shortener.manning.com/nQ4K
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predict() method to generate new examples of handwritten digits, given an input
seed, which is just the latent space vector. And of course, we have to use MNIST
because we wouldn’t want anyone getting any ideas that there could be other datasets
out there; see figure 2.4.

In our code, we first have to import all dependencies, as shown in the following list-
ing. For reference, this code was checked with Keras as late as 2.2.4 and TensorFlow as
late as 1.12.0.

from keras.layers import Input, Dense, Lambda
from keras.models import Model
from keras import backend as K
from keras import objectives
from keras.datasets import mnist
import numpy as np

The next step is to set global variables and hyperparameters, as shown in listing 2.2.
They should all be familiar: the original dimensions are 28 × 28, which is the standard
size. We then flatten the images from the MNIST dataset, to get a vector of 784 (28 ×
28) dimensions. And we will also have a single intermediate layer of, say, 256 nodes.
But do experiment with other sizes; that’s why it’s a hyperparameter!

batch_size = 100
original_dim = 28*28     

Listing 2.1 Standard imports

Listing 2.2 Setting hyperparameters

Any

other

dataset

MNIST

Machine learning

researchers Figure 2.4 How computer vision 
researchers think. Enough said. 
(Source: Artificial Intelligence Memes for 
Artificial Intelligence Teens on Facebook, 
http://mng.bz/vNjM.)

Height × width of 
MNIST image

https://shortener.manning.com/vNjM
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e 
ce 
nt 
latent_dim = 2
intermediate_dim = 256
nb_epoch = 5            
epsilon_std = 1.0

In listing 2.3, we start constructing the encoder. To achieve this, we use the functional
API from Keras. 

NOTE The functional API uses lambda functions in Python to return construc-
tors for another function, which takes another input, producing the final
result.

The short version is that we will simply declare each layer, mentioning the previous
input as a second group of arguments after the regular arguments. For example, the layer
h takes x as an input. At the end, when we compile the model and indicate where it
starts (x) and where it ends ([z_mean, z_log_var and z]), Keras will understand how
the starting input and the final list output are linked together. Remember from the
diagrams that z is our latent space, which in this case is a normal distribution defined
by mean and variance. Let’s now define the encoder.8

x = Input(shape=(original_dim,), name="input")  
h = Dense(intermediate_dim, activation='relu', name="encoding")(x)  
z_mean = Dense(latent_dim, name="mean")(h)                          
z_log_var = Dense(latent_dim, name="log-variance")(h)                
z = Lambda(sampling, output_shape=(latent_dim,))([z_mean, z_log_var]) 
encoder = Model(x, [z_mean, z_log_var, z], name="encoder")  

Now comes the tricky part, where we sample from the latent space and then feed this
information through to the decoder. But think for a bit how z_mean and z_log_var are
connected: they are both connected to h with a dense layer of two nodes, which are
the defining characteristics of a normal distribution: mean and variance. The preced-
ing sampling function is implemented as shown in the following listing.

def sampling(args):
    z_mean, z_log_var = args
    epsilon = K.random_normal(shape=(batch_size, latent_dim), mean=0.)
    return z_mean + K.exp(z_log_var / 2) * epsilon

Listing 2.3 Creating the encoder

8 This idea is inspired by Branko Blagojevic in our book forums. Thank you for this suggestion. 

Listing 2.4 Creating the sampling helper function

Number of epochs

Input to our
encoder Intermediate

layer

Defines the mean 
of the latent space

Defines th
log varian
of the late
spaceNote that output_shape 

isn’t necessary with the 
TensorFlow backend.

Defines the encoder
as a Keras model
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In other words, we learn the mean (µ) and the variance (). This overall implemen-
tation, where we have one z connected through a sampling function as well as
z_mean and z_log_var, allows us to both train and subsequently sample efficiently to
get some neat-looking figures at the end. During generation, we sample from this
distribution according to these learned parameters, and then we feed these values
through the decoder to get the output, as you will see in the figures later. For those
of you who are a bit rusty on distributions—or probability density functions in this
case—we have included several examples of unimodal two-dimensional Gaussians in
figure 2.5.

Now that you understand what defines our latent space and what these distributions
look like, we’ll write the decoder. In this case, we write the layers as variables first so we
can reuse them later for the generation.

 
 
 

(b) (c)

Figure 2.5 As a reminder of what a multivariate (2D) distribution looks like, we’ve plotted probability 
density functions of bivariate (2D) Gaussians. They are uncorrelated 2D normal distributions, except 
with different variances. (a) has a variance of 0.5, (b) of 1, and (c) of 2. (d), (e), and (f) are the exact 
same distributions as (a), (b), and (c), respectively, but plotted with a set z-axis limit at 0.7. Intuitively, 
this is just a function that for each point says how likely it is to occur. So (a) and (d) are much more 
concentrated, whereas (c) and (f) are making it possible for values far away from the origin (0,0) to 
occur, but each given value is not as likely.

(a)

(d) (e) (f)
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input_decoder = Input(shape=(latent_dim,), name="decoder_input")   
decoder_h = Dense(intermediate_dim, activation='relu',           
name="decoder_h")(input_decoder)
x_decoded = Dense(original_dim, activation='sigmoid', 
name="flat_decoded")(decoder_h)                                 
decoder = Model(input_decoder, x_decoded, name="decoder")  

We can now combine the encoder and the decoder into a single VAE model.

output_combined = decoder(encoder(x)[2])      
vae = Model(x, output_combined)      
vae.summary()    

Next, we get to the more familiar parts of machine learning: defining a loss function
so our autoencoder can train.

def vae_loss(x, x_decoded_mean, z_log_var, z_mean,
    original_dim=original_dim):
    xent_loss = original_dim * objectives.binary_crossentropy(
        x, x_decoded_mean)
    kl_loss = - 0.5 * K.sum(
        1 + z_log_var - K.square(z_mean) - K.exp(z_log_var),
        axis=-1)
    return xent_loss + kl_loss

vae.compile(optimizer='rmsprop', loss=vae_loss)    

Here you can see where using binary cross-entropy and KL divergence add together to
form overall loss. KL divergence measures the difference between distributions; imag-
ine the two blobs from figure 2.5 and then measuring the volume of overlap. Binary
cross-entropy is one of the common loss functions for two-class classification: here we
simply compare each grayscale pixel value of x to the value in x_decoded_mean, which
is the reconstruction we were talking about earlier. If you are still confused about this
paragraph after the following definition, chapter 5 provides more details on measur-
ing differences between distributions.

DEFINITION For those interested in more detail and who are familiar with
information theory, the Kullback–Leibler divergence (KL divergence), aka relative

Listing 2.5 Writing the decoder

Listing 2.6 Combining the model

Listing 2.7 Defining our loss function

Input to the decoder Takes the latent space to the
intermediate dimension

Gets the 
mean from 
the original 
dimension

Defines the decoder
as a Keras model

Grabs the output. 
Recall that we need to 
grab the third element, 
our sampling z.

Links the input and
the overall outputPrints out what the

overall model looks like

Finally compiles 
our model
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entropy, is the difference between cross-entropy of two distributions and their
own entropy. For everyone else, imagine drawing out the two distributions, and
wherever they do not overlap will be an area proportional to the KL divergence.

Then we define the model to start at x and end at x_decoded_mean. The model is com-
piled using RMSprop, but we could use Adam or vanilla stochastic gradient descent
(SGD). As with any deep learning system, we are using backpropagated errors to navi-
gate the parameter space. We are always using some type of gradient descent, but in
general, people rarely try any other than the three mentioned here: Adam, SGD, or
RMSprop.

DEFINITION Stochastic gradient descent (SGD) is an optimization technique that
allows us to train complex models by figuring out the contribution of any
given weight to an error and updating this weight (no update if the predic-
tion is 100% correct). We recommend brushing up on this in, for example,
Deep Learning with Python.

We train the model by using the standard procedure of train-test split and input nor-
malization.

(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))

We normalize the data and reshape the train set and test set to be one 784-digit-long
array per example instead of a 28 × 28 matrix.

 Then we apply the fit function, using shuffling to get a realistic (nonordered)
dataset. We also use validation data to monitor progress as we train:

vae.fit(x_train, x_train,
        shuffle=True,
        nb_epoch=nb_epoch,
        batch_size=batch_size,
        validation_data=(x_test, x_test),verbose=1)

We’re done!
 The full version of the code provides a fun visualization of the latent space; how-

ever, for that, look into the accompanying Jupyter/Google Colaboratory notebook.
Now we get to kick back, relax, and watch those pretty progress bars. After we are
done, we can even take a look at what the values of the latent space look like on a 2D
plane, as shown in figure 2.6.

 We can also compute the values at fixed increments of a latent space grid to take a
look at the generated output. For example, going from 0.05 to 0.95 in 0.15 linear
increments across both dimensions gives us the visualization in figure 2.7. Remember

Listing 2.8 Creating the train/test split
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Figure 2.6 2D projection of all the points 
from the test set into the latent space and 
their class. In this figure, we display the 2D 
latent space onto the graph. We then map out 
the classes of these generated examples and 
color them accordingly, as per the legend on 
the right. Here we can see that the classes 
tend to be neatly grouped together, which 
tells us that this is a good representation. 
A color version is available in the GitHub 
repository for this book.

Figure 2.7 We map out the values of a subset of the latent space on a grid and 
pass each of those latent space values through the generator to produce this figure. 
This gives us a sense of how much the resulting picture changes as we vary z.
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that we’re using a bivariate Gaussian in this case, giving us two axes to iterate over.
Again, for the code for this visualization, look at the full Jupyter/Google Colab
notebook.

2.8 Why did we try aGAN?
It would seem that the book could almost stop at this point. After all, we have
successfully generated images of MNIST, and that will be our test case for several
examples. So before you call it quits, let us explain our motivation for the chapters
to come.

 To appreciate the challenges, imagine that we have a simple one-dimensional
bimodal distribution—as pictured in figure 2.8. (As before, just think of it as a simple
mathematical function that is bounded between 0 and 1 and that represents probabil-
ity at any given point. The higher the value of the function, the more points we sam-
pled at that exact point before.)

Suppose we draw a bunch of samples from this true distribution, but we do not know
the underlying model. We are now trying to infer what distribution generated these
samples, but for some reason we assume that the true distribution is a simple Gaussian
and we just need to estimate the mean and variance. But because we did not specify
the model correctly (in this case, we put in wrong assumptions about the modality of
these samples), we get into loads of trouble. For example, if we apply a traditional sta-
tistical technique called maximum likelihood estimation to estimate this distribution as

Max likelihood distr. estimate

Point estimate

N = 100000.0 points

Mode collapse

True distribution

0.35

0.30

0.25

0.20
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0.00
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Figure 2.8 Maximum likelihood, point estimates, and true distributions. The gray (theoretical) 
distribution is bimodal rather than having a single mode. But because we have assumed this, our 
model is catastrophically wrong. Alternatively, we can get mode collapse, which is worth keeping in 
mind for chapter 5. This is especially true when we are using flavors of the KL, such as the VAE or 
early GANs.
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unimodal—in some ways, that is what VAE is trying to do—we get out the wrong estimate.
Because we have misspecified the model,9 it will estimate a normal distribution
around the average of the two distributions—called the point estimate. Maximum likeli-
hood is a technique that does not know and cannot figure out that there are two dis-
tinct distributions. So to minimize the error, it creates a “fat-tailed” normal around the
point estimate. Here, it can seem trivial, but always remember, we are trying to specify
models in very high-dimensional spaces, which is not easy!

DEFINITION Bimodal means having two peaks, or modes. This notion will be
useful in chapter 5. In this case, we made the overall distribution to be com-
posed of two normals with means of 0 and 5.

Interestingly, the point estimate will also be wrong and can even live in an area where
there is no actual data sampled from the true distribution. When you look at the
samples (black crosses), no real samples occur where we have estimated our mean. This
is, again, quite troubling. To tie it back to the autoencoder, see how in figure 2.6 we
learned 2D normal distribution in the latent space centered around the origin? But
what if we had thrown images of celebrity faces into the training data? We would no lon-
ger have an easy center to estimate, because the two data distributions would have more
modalities than we thought we would have. As a result, even around the center of the
distribution, the VAE could produce odd hybrids of the two datasets, because the VAE
would try to somehow separate the two datasets.

 So far, we have discussed only the hypothetical impact of a statistical mistake. To
connect this aspect all the way to autoencoder-generated images, we should think
about what our Gaussian latent space z allows us to do. The VAE uses the Gaussian as a
way to build representations of the data it sees. But because Gaussians have 99.7% of
the probability mass within three standard deviations of the middle, the VAE will also
opt for the safe middle. Because VAEs are, in a way, trying to come up directly with the
underlying model based on Gaussians, but the reality can be pretty complex, VAEs do
not scale up as well as GANs, which can pick up “scenarios.” 

 You can see what happens when your VAE opts for the “safe middle” in figure 2.9.
On the CelebA dataset, which features aligned and cropped celebrity faces, the VAE
models the consistently present facial features well, such as eyes or mouth, but makes
mistakes in the background.

 On the other hand, GANs have an implicit and hard-to-analyze understanding of
the real data distribution. As you will discover in chapter 5, VAEs live in the directly
estimated maximum likelihood model family.

 
 
 

9 See Pattern Recognition and Machine Learning, by Christopher Bishop (Springer, 2011).
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This section hopefully made you comfortable with thinking about the distributions
of the target data and how these distributional implications manifest themselves in
our training process. We will look into these assumptions much more in chapter 10,
where the model has assumed how to fill in the distributions and that becomes a
problem that adversarial examples will be able to exploit to make our machine
learning models fail.

Summary
 Autoencoders on a high level are composed of an encoder, a latent space, and a

decoder. An autoencoder is trained by using a common objective function that
measures the distance between the reproduced and original data.

Figure 2.9 In these images of fake celebrity faces generated by a VAE, the edges 
are quite blurry and blend into the background. This is because the CelebA dataset 
has centered and aligned images with consistent features around eyes and mouth, 
but the backgrounds tend to vary. The VAE picks the safe path and makes the 
background blurry by choosing a “safe” pixel value, which minimizes the loss, but 
does not provide good images. 
(Source: VAE-TensorFlow by Zhenliang He, GitHub, https://github.com/LynnHo/VAE-Tensorflow.)

https://github.com/LynnHo/VAE-Tensorflow
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 Autoencoders have many applications and can also be used as a generative
model. In practice, this tends not to be their primary use because other meth-
ods, especially GANs, are better at the generative task.

 We can use Keras (a high-level API for TensorFlow) to write a simple variational
autoencoder that produces handwritten digits.

 VAEs have limitations that motivate us to move on to GANs.



Your first GAN:
Generating handwritten digits
In this chapter, we explore the foundational theory behind GANs. We introduce
the commonly used mathematical notation you may encounter if you choose to
dive deeper into this field, perhaps by reading a more theoretically focused publi-
cation or even one of the many academic papers on this topic. This chapter also
provides background knowledge for the more advanced chapters, particularly
chapter 5.

 From a strictly practical standpoint, however, you don’t have to worry about
many of these formalisms—much as you don’t need to know how an internal com-
bustion engine works to drive a car. Machine learning libraries such as Keras and
TensorFlow abstract the underlying mathematics away from us and neatly package
them into importable lines of code. 

This chapter covers
 Exploring the theory behind GANs and adversarial 

training

 Understanding how GANs differ from conventional 
neural networks

 Implementing a GAN in Keras, and training it to 
generate handwritten digits 
36
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 This will be a recurring theme throughout this book; it is also true for machine
learning and deep learning in general. So, if you are someone who prefers to dive
straight into practice, feel free to skim through the theory section and skip ahead to
the coding tutorial.

3.1 Foundations of GANs: Adversarial training
Formally, the Generator and the Discriminator are represented by differentiable func-
tions, such as neural networks, each with its own cost function. The two networks are
trained by backpropagation by using the Discriminator’s loss. The Discriminator
strives to minimize the loss for both the real and the fake examples, while the Genera-
tor tries to maximize the Discriminator’s loss for the fake examples it produces. 

 This dynamic is summarized in figure 3.1. It is a more general version of the dia-
gram from chapter 1, where we first explained what GANs are and how they work.
Instead of the concrete example of handwritten digits, in this diagram, we have a gen-
eral training dataset which, in theory, could be anything.

Importantly, the training dataset determines the kind of examples the Generator will
learn to emulate. If, for instance, our goal is to produce realistic-looking images of
cats, we would supply our GAN with a dataset of cat images. 

 In more technical terms, the Generator’s goal is to produce examples that capture
the data distribution of the training dataset.1 Recall that to a computer, an image is

1 See “Generative Adversarial Networks,” by Ian J. Goodfellow et al., 2014, https://arxiv.org/abs/1406.2661. 

Training
dataset

Discriminator

Generator

Classification
loss

Iteratively train

Iteratively train

x

z

x*

Figure 3.1 In this GAN architecture diagram, both the Generator and the Discriminator are trained 
using the Discriminator’s loss. The Discriminator strives to minimize the loss; the Generator seeks 
to maximize the loss for the fake examples it produces.

https://arxiv.org/abs/1406.2661
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just a matrix of values: two-dimensional for grayscale and three-dimensional for color
(RGB) images. When rendered onscreen, the pixel values within these matrices mani-
fest all the visual elements of an image—lines, edges, contours, and so forth. These
values follow a complex distribution across each image in a dataset; after all, if no dis-
tribution is followed, an image will be no more than random noise. Object recognition
models learn the patterns in images to discern an image’s content. The Generator can
be thought of as the reverse of the process: rather than recognizing these patterns, it
learns to synthesize them.

3.1.1 Cost functions

Following the standard notation, let J(G) denote the Generator’s cost function and J (D)

the Discriminator’s cost function. The trainable parameters (weights and biases) of
the two networks are represented by the Greek letter theta:  (G) for the Generator and
(D) for the Discriminator.

 GANs differ from conventional neural networks in two key respects. First, the cost
function, J, of a traditional neural network is defined exclusively in terms of its own
trainable parameters, . Mathematically, this is expressed as J(). In contrast, GANs
consist of two networks whose cost functions are dependent on both of the networks’
parameters. That is, the Generator’s cost function is J(G)((G), (D)), and the Discrimi-
nator’s cost function is J(D)( (G),  (D)).2

 The second (related) difference is that a traditional neural network can tune all its
parameters, , during the training process. In a GAN, each network can tune only its
own weights and biases. The Generator can tune only  (G), and the Discriminator can
tune only  (D) during training. Accordingly, each network has control over only a part
of what determines its loss.

 To make this a little less abstract, consider the following analogy. Imagine we are
choosing which route to drive home from work. If there is no traffic, the fastest option
is the highway. During rush hour, however, we may be better off taking one of the side
roads. Despite being longer and windier, they might get us home faster when the
highway is all clogged up with traffic.

 Let’s phrase it as a math problem. Let J be our cost function, defined as the amount
of time it takes us to get home. Our goal is to minimize J. For simplicity, let’s assume we
have a set time to leave the office, so we cannot leave early to get ahead of rush hour or
stay late to avoid it. The only parameter, , we can change is our route.

 If ours were the only car on the road, our cost would be similar to a regular neural
network’s: it would depend only on the route, and it would be entirely within our
power to optimize, J(). However, as soon as we introduce other drivers into the equa-
tion, the situation gets more complicated. Suddenly, the time it will take us to get
home depends not only on our decisions but also on other drivers’ course of action,

2 See “NIPS 2016 Tutorial: Generative Adversarial Networks,” by Ian Goodfellow, 2016, https://arxiv.org/
abs/1701.00160.

https://arxiv.org/abs/1701.00160
https://arxiv.org/abs/1701.00160
https://arxiv.org/abs/1701.00160
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J( (us), (other drivers)). Much like the Generator and Discriminator networks, our “cost
function” will depend on an interplay of factors, some of which are under our control
and others of which are not.

3.1.2 Training process

The two differences we’ve described have far-reaching implications on the GAN train-
ing process. The training of a traditional neural network is an optimization problem.
We seek to minimize the cost function by finding a set of parameters such that moving
to any neighboring point in the parameter space would increase the cost. This could
be either a local or a global minimum in the parameter space, as determined by the
cost function we are seeking to minimize. Figure 3.2 illustrates the optimization pro-
cess of minimizing a cost function.

Because the Generator and Discriminator can tune only their own parameters and
not each other’s, GAN training can be better described as a game, rather than optimi-
zation.3 The players in this game are the two networks that the GAN comprises.

 Recall from chapter 1 that GAN training ends when the two networks reach Nash
equilibrium, a point in a game at which neither player can improve their situation by
changing their strategy. Mathematically, this occurs when the Generator cost J(G)((G),
 (D)) is minimized with respect to the Generator’s trainable parameters  (G) and,
simultaneously, the Discriminator cost J(D)((G), (D)) is minimized with respect to the
parameters under this network’s control,  (D).4 Figure 3.3 illustrates the setup of a two-
player zero-sum game and the process of reaching Nash equilibrium.

 Coming back to our analogy, Nash equilibrium would occur when every route
home takes exactly the same amount of time—for us and all other drivers we may
encounter on the way. Any faster route would be offset by a proportional increase
in traffic, slowing everyone down just the right amount. As you may imagine, this
state is virtually unattainable in real life. Even with tools like Google Maps that

3 Ibid.
4 Ibid.

Figure 3.2 The bowl-shaped mesh represents the 
loss J in the parameter space 1 and 2. The black 
dotted line illustrates the minimization of the loss in 
the parameter space through optimization. 
(Source: “Adversarial Machine Learning,” by Ian Goodfellow, 
ICLR Keynote, 2019, www.iangoodfellow.com/slides/2019-05-
07.pdf.)
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provide real-time traffic updates, it is often impossible to perfectly evaluate the
optimal path home.

 The same is true in the high-dimensional, nonconvex world of training GANs.
Even small 28 × 28-pixel grayscale images like the ones in the MNIST dataset have 28 ×
28 = 784 dimensions. If they were colored (RGB), their dimensionality would increase
threefold, to 2,352. Capturing this distribution across all images in the training dataset
is extremely difficult, especially when the best approach to learn is from an adversary
(the Discriminator).

 Training GANs successfully requires trial and error, and although there are best
practices, it remains as much an art as it is a science. Chapter 5 revisits the topic of
GAN convergence in more detail. For now, you can rest assured that the situation is
not as bad as it may sound. As we previewed in chapter 1, and as you will see through-
out this book, neither the enormous complexities in approximating the generative
distribution nor our lack of complete understanding of what conditions make GANs
converge has impeded GANs’ practical usability and their ability to generate realistic
data samples.

3.2 The Generator and the Discriminator
Let’s recap what you’ve learned by introducing more notation. The Generator (G)
takes in a random noise vector z and produces a fake example x*. Mathematically,
G(z) = x*. The Discriminator (D) is presented either with a real example x or with a
fake example x* ; for each input, it outputs a value between 0 and 1 indicating the
probability that the input is real. Figure 3.4 depicts the GAN architecture by using the
terminology and notation we just presented.

Figure 3.3 Player 1 (left) seeks to minimize V by tuning 1. Player 2 (middle) seeks to minimize –V 
(maximize V) by tuning 2. The saddle-shaped mesh (right) shows the combined loss in the parameter 
space V(1, 2). The dotted line shows the convergence to Nash equilibrium at the center of the saddle. 
(Source: Goodfellow, 2019, www.iangoodfellow.com/slides/2019-05-07.pdf.)
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3.2.1 Conflicting objectives

The Discriminator’s goal is to be as accurate as possible. For the real examples x, D(x)
seeks to be as close as possible to 1 (label for the positive class). For fake examples x*,
D(x*) strives to be as close as possible to 0 (label for the negative class).

 The Generator’s goal is the opposite. It seeks to fool the Discriminator by produc-
ing fake examples x* that are indistinguishable from the real data in the training data-
set. Mathematically, the Generator strives to produce fake examples x* such that
D(x*) is as close to 1 as possible.

3.2.2 Confusion matrix

The Discriminator’s classifications can be expressed in terms of a confusion matrix, a
tabular representation of all the possible outcomes in binary classification. In the case
of the Discriminator, these are as follows:

 True positive—Real example correctly classified as real; D(x)  1
 False negative—Real example incorrectly classified as fake; D(x)  0
 True negative—Fake example correctly classified as fake; D(x*)  0
 False positive—Fake example incorrectly classified as real; D(x*)  1

Table 3.1 presents these outcomes.

Table 3.1 Confusion matrix of Discriminator outcomes

Input
Discriminator output

Close to 1 (real) Close to 0 (fake)

Real (x) True positive False negative

Fake (x*) False positive True negative

z G

D

x*

x

Classification

Figure 3.4 The Generator network G transforms the random vector z into a fake 
example x*: G(z) = x*. The Discriminator network D outputs a classification of 
whether the input example is real. For the real examples x, the Discriminator strives 
to output values as close to 1 as possible. For the fake examples x*, the Discriminator 
strives to output values as close to 0 as possible. In contrast, the Generator wants 
D(x*) to be as close as possible to 1, indicating that the Discriminator was fooled into 
classifying a fake example as real.
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Using the confusion matrix terminology, the Discriminator is trying to maximize true
positive and true negative classifications or, equivalently, minimize false positive and
false negative classifications. In contrast, the Generator’s goal is to maximize the Dis-
criminator’s false positive classifications—these are the instances in which the Genera-
tor successfully fools the Discriminator into believing a fake example is real. The
Generator is not concerned with how well the Discriminator classifies the real exam-
ples; it cares only about the Discriminator’s classifications of the fake data samples.

3.3 GAN training algorithm
Let’s revisit the GAN training algorithm from chapter 1 and formalize it by using the
notation introduced in this chapter. Unlike the algorithm in chapter 1, this one uses
mini-batches rather than one example at a time.

Notice that in step 1, the Generator’s parameters are kept intact while we train the
Discriminator. Similarly, in step 2, we keep the Discriminator’s parameters fixed while
the Generator is trained. The reason we allow updates only to the weights and biases
of the network being trained is to isolate all changes to only the parameters that are
under the network’s control. This ensures that each network gets relevant signals
about the updates to make, without interference from the other’s updates. You can
almost think of it as two players taking turns.

 Of course, you can imagine a scenario in which each player merely undoes the
other’s progress, so not even a turn-based game is guaranteed to yield a useful out-
come. (Have we said yet that GANs are notoriously tricky to train?) More on this in
chapter 5, where we also discuss techniques to maximize our chances of success. 

 That’s it for theory, for the time being. Let’s now put what we learned into practice
and implement our first GAN.

GAN training algorithm
For each training iteration do

1 Train the Discriminator:
a Take a random mini-batch of real examples: x.
b Take a mini-batch of random noise vectors z and generate a mini-batch of

fake examples: G(z) = x*.
c Compute the classification losses for D(x) and D(x*), and backpropagate

the total error to update  (D) to minimize the classification loss.
2 Train the Generator:

a Take a mini-batch of random noise vectors z and generate a mini-batch of
fake examples: G(z) = x*.

b Compute the classification loss for D(x*), and backpropagate the loss to
update  (G) to maximize the classification loss.

End for
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3.4 Tutorial: Generating handwritten digits
In this tutorial, we will implement a GAN that learns to produce realistic-looking
handwritten digits. We will use the Python neural network library Keras with a
TensorFlow backend. Figure 3.5 shows a high-level architecture of the GAN we will
implement.

Much of the code used in this tutorial—especially the boilerplate code used in the
training loop—was adapted from the open source GitHub repository of GAN imple-
mentations in Keras, Keras-GAN, created by Erik Linder-Norén (https://github.com/
eriklindernoren/Keras-GAN). The repository also includes several advanced GAN
variants, some of which will be covered later in this book. We revised and simplified
the implementation considerably, in terms of both code and network architecture,
and we renamed variables so that they are consistent with the notation used in this
book. 

 A Jupyter notebook with the full implementation, including added visualizations
of the training progress, is available on the book's website at www.manning.com/
books/gans-in-action and in the GitHub repository for this book at https://github
.com/GANs-in-Action/gans-in-action under the chapter-3 folder. The code was tested
with Python 3.6.0, Keras 2.1.6, and TensorFlow 1.8.0.

x

x*

Discriminator

Generator

Classification

z

Figure 3.5 Over the course of the training iterations, the Generator learns to turn 
random noise input into images that look like members of the training data: the 
MNIST dataset of handwritten digits. Simultaneously, the Discriminator learns to 
distinguish the fake images produced by the Generator from the genuine ones 
coming from the training dataset.

http://www.manning.com/books/gans-in-action
http://www.manning.com/books/gans-in-action
http://www.manning.com/books/gans-in-action
https://github.com/GANs-in-Action/gans-in-action
https://github.com/GANs-in-Action/gans-in-action
https://github.com/GANs-in-Action/gans-in-action
https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
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3.4.1 Importing modules and specifying model input dimensions

First, we import all the packages and libraries needed to run the model. Notice we
also import the MNIST dataset of handwritten digits directly from keras.datasets.

%matplotlib inline

import matplotlib.pyplot as plt
import numpy as np

from keras.datasets import mnist
from keras.layers import Dense, Flatten, Reshape
from keras.layers.advanced_activations import LeakyReLU
from keras.models import Sequential
from keras.optimizers import Adam

Second, we specify the input dimensions of our model and dataset. Each image in
MNIST is 28 × 28 pixels with a single channel (because the images are grayscale). The
variable z_dim sets the size of the noise vector, z.

img_rows = 28
img_cols = 28
channels = 1

img_shape = (img_rows, img_cols, channels)    

z_dim = 100    

Next, we implement the Generator and the Discriminator networks. 

3.4.2 Implementing the Generator 

For simplicity, the Generator is a neural network with only a single hidden layer. It
takes in z as input and produces a 28 × 28 × 1 image. In the hidden layer, we use
the Leaky ReLU activation function. Unlike a regular ReLU function, which maps
any negative input to 0, Leaky ReLU allows a small positive gradient. This pre-
vents gradients from dying out during training, which tends to yield better training
outcomes.

 At the output layer, we employ the tanh activation function, which scales the out-
put values to the range [–1, 1]. The reason for using tanh (as opposed to, say, sigmoid,
which would output values in the more typical 0 to 1 range) is that tanh tends to pro-
duce crisper images.

 The following listing implements the Generator.
 
 

Listing 3.1 Import statements

Listing 3.2 Model input dimensions

Input image 
dimensions

Size of the noise vector, used 
as input to the Generator
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def build_generator(img_shape, z_dim):
    model = Sequential()

    model.add(Dense(128, input_dim=z_dim))    

    model.add(LeakyReLU(alpha=0.01))      

    model.add(Dense(28 * 28 * 1, activation='tanh'))    

    model.add(Reshape(img_shape))   

    return model

3.4.3 Implementing the Discriminator

The Discriminator takes in a 28 × 28 × 1 image and outputs a probability indicating
whether the input is deemed real rather than fake. The Discriminator is represented
by a two-layer neural network, with 128 hidden units and a Leaky ReLU activation func-
tion at the hidden layer. 

 For simplicity, our Discriminator network looks almost identical to the Generator.
This does not have to be the case; indeed, in most GAN implementations, the Genera-
tor and Discriminator network architectures vary greatly in both size and complexity. 

 Notice that unlike for the Generator, in the following listing we apply the sigmoid
activation function at the Discriminator’s output layer. This ensures that our output
value will be between 0 and 1, so it can be interpreted as the probability the Generator
assigns that the input is real.

def build_discriminator(img_shape):

    model = Sequential()

    model.add(Flatten(input_shape=img_shape))    

    model.add(Dense(128))                

    model.add(LeakyReLU(alpha=0.01))   

    model.add(Dense(1, activation='sigmoid'))    

    return model

3.4.4 Building the model

In listing 3.5, we build and compile the Generator and Discriminator models imple-
mented previously. Notice that in the combined model used to train the Generator,
we keep the Discriminator parameters fixed by setting discriminator.trainable to
False. Also note that the combined model, in which the Discriminator is set to

Listing 3.3 Generator

Listing 3.4 Discriminator 

Fully connected 
layer

Leaky ReLU 
activation

Output layer 
with tanh 
activationReshapes the 

Generator output to 
image dimensions

Flattens the 
input image

Fully connected 
layer

Leaky ReLU activation

Output layer with 
sigmoid activation
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untrainable, is used to train the Generator only. The Discriminator is trained as an
independently compiled model. (This will become apparent when we review the train-
ing loop.) 

 We use binary cross-entropy as the loss function we are seeking to minimize
during training. Binary cross-entropy is a measure of the difference between com-
puted probabilities and actual probabilities for predictions with only two possible
classes. The greater the cross-entropy loss, the further away our predictions are from
the true labels.

 To optimize each network, we use the Adam optimization algorithm. This algorithm,
whose name is derived from adaptive moment estimation, is an advanced gradient-
descent-based optimizer. The inner workings of this algorithm are beyond the scope
of this book, but it suffices to say that Adam has become the go-to optimizer for most
GAN implementations thanks to its often superior performance.

def build_gan(generator, discriminator):

    model = Sequential()

    model.add(generator)         
    model.add(discriminator)

    return model

discriminator = build_discriminator(img_shape)    
discriminator.compile(loss='binary_crossentropy',
                      optimizer=Adam(),
                      metrics=['accuracy'])

generator = build_generator(img_shape, z_dim)   

discriminator.trainable = False         

gan = build_gan(generator, discriminator)    
gan.compile(loss='binary_crossentropy', optimizer=Adam())

3.4.5 Training

The training code in listing 3.6 implements the GAN training algorithm. We get a ran-
dom mini-batch of MNIST images as real examples and generate a mini-batch of fake
images from random noise vectors z. We then use those to train the Discriminator net-
work while keeping the Generator’s parameters constant. Next, we generate a mini-
batch of fake images and use those to train the Generator network while keeping the
Discriminator’s parameters fixed. We repeat this for each iteration.

 We use one-hot-encoded labels: 1 for real images and 0 for fake ones. To generate
z, we sample from the standard normal distribution (a bell curve with 0 mean and a

Listing 3.5 Building and compiling the GAN

Combined Generator + 
Discriminator model

Builds and compiles 
the Discriminator

Builds the Generator

Keeps Discriminator’s 
parameters constant 
for Generator training

Builds and compiles 
GAN model with fixed 
Discriminator to 
train the Generator
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G

standard deviation of 1). The Discriminator is trained to assign fake labels to the fake
images and real labels to real images. The Generator is trained such that the Discrimi-
nator assigns real labels to the fake examples it produces.

 Notice that we are rescaling the real images in the training dataset from –1 to 1. As
you saw in the preceding example, the Generator uses the tanh activation function at
the output layer, so the fake images will be in the range (–1, 1). Accordingly, we have
to rescale all the Discriminator’s inputs to the same range.

losses = []
accuracies = []
iteration_checkpoints = []

def train(iterations, batch_size, sample_interval):

    (X_train, _), (_, _) = mnist.load_data()    

    X_train = X_train / 127.5 - 1.0                
    X_train = np.expand_dims(X_train, axis=3)

    real = np.ones((batch_size, 1))      

    fake = np.zeros((batch_size, 1))     

    for iteration in range(iterations):

        idx = np.random.randint(0, X_train.shape[0], batch_size)    
        imgs = X_train[idx]

        z = np.random.normal(0, 1, (batch_size, 100))     
        gen_imgs = generator.predict(z)

        d_loss_real = discriminator.train_on_batch(imgs, real)    
        d_loss_fake = discriminator.train_on_batch(gen_imgs, fake)
        d_loss, accuracy = 0.5 * np.add(d_loss_real, d_loss_fake)

        z = np.random.normal(0, 1, (batch_size, 100))   
        gen_imgs = generator.predict(z)

        g_loss = gan.train_on_batch(z, real)      

        if (iteration + 1) % sample_interval == 0:

            losses.append((d_loss, g_loss))        
            accuracies.append(100.0 * accuracy)
            iteration_checkpoints.append(iteration + 1)

Listing 3.6 GAN training loop

Loads the MNIST 
dataset

Rescales [0, 255] grayscale 
pixel values to [–1, 1]

Labels for real 
images: all 1s

Labels for fake 
images: all 0s

ets a random
batch of real

images

Generates a batch 
of fake images

Trains the
Discriminator

Generates a batch 
of fake images

Trains the 
Generator

Saves losses and 
accuracies so they can be 
plotted after training
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im
v

            print("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" %    
                  (iteration + 1, d_loss, 100.0 * accuracy, g_loss))

            sample_images(generator)     

3.4.6 Outputting sample images

In the Generator training code, you may notice an invocation of the sample_images()
function. This function gets called every sample_interval iterations and outputs a
4 × 4 grid of images synthesized by the Generator in the given iteration. After we run
our model, we will use these images to inspect interim and final outputs.

def sample_images(generator, image_grid_rows=4, image_grid_columns=4):

    z = np.random.normal(0, 1, (image_grid_rows * image_grid_columns, z_dim))

    gen_imgs = generator.predict(z)     

    gen_imgs = 0.5 * gen_imgs + 0.5               

    fig, axs = plt.subplots(image_grid_rows,      
                            image_grid_columns,
                            figsize=(4, 4),
                            sharey=True,
                            sharex=True)

    cnt = 0
    for i in range(image_grid_rows):
        for j in range(image_grid_columns):
            axs[i, j].imshow(gen_imgs[cnt, :, :, 0], cmap='gray')   
            axs[i, j].axis('off')
            cnt += 1

3.4.7 Running the model

That brings us to the final step, shown in listing 3.8. We set the training hyperparame-
ters—the number of iterations and the batch size—and train the model. There is no
tried-and-true method to determine the right number of iterations or the right batch
size; we determine them experimentally through trial and error as we observe the
training progress. 

 That said, there are important practical constraints to these numbers: each mini-
batch must be small enough to fit inside the processing memory (typical batch sizes
people use are powers of 2: 32, 64, 128, 256, and 512). The number of iterations also
has a practical constraint: the more iterations we have, the longer the training process
takes. With complex deep learning models like GANs, this can get out of hand
quickly, even with significant computing power. 

Listing 3.7 Displaying generated images

Outputs
training

progress
Outputs a sample of 
generated images

Sample
random

noise Generates images 
from random noise

Rescales
age pixel
alues to

[0, 1]
Sets image grid

Outputs 
a grid of 
images
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 To determine the right number of iterations, we monitor the training loss and
set the iteration number around the point when the loss plateaus, indicating that we
are getting little to no incremental improvement from further training. (Because
this is a generative model, overfitting is as much a concern as it is for supervised
learning algorithms.)

iterations = 20000    
batch_size = 128
sample_interval = 1000

train(iterations, batch_size, sample_interval)       

3.4.8 Inspecting the results

Figure 3.6 shows example images produced by the Generator over the course of train-
ing iterations, from earliest to latest.

Listing 3.8 Running the model

Sets 
hyperparameters Trains the GAN for 

the specified 
number of iterations

Figure 3.6 Starting from what looks to be no more than 
random noise, the Generator gradually learns to emulate the 
features of the training dataset: in our case, images of 
handwritten digits.
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As you can see, the Generator starts out by producing little more than random noise.
Over the course of the training iterations, it gets better and better at emulating the
features of the training data. Each time the Discriminator rejects a generated image as
false or accepts one as real, the Generator improves a little. Figure 3.7 shows examples
of images the Generator can synthesize after it is fully trained.

For comparison, figure 3.8 shows a randomly selected sample of real images from the
MNIST dataset. 

3.5 Conclusion
Although the images our GAN generated are far from perfect, many of them are eas-
ily recognizable as real numerals—an impressive achievement, given that we used only
a simple two-layer network architecture for both the Generator and the Discriminator.
In the following chapter, you will learn how to improve the quality of the generated
images by using a more complex and powerful neural network architecture for the
Generator and Discriminator: convolutional neural networks.

Summary
 GANs consist of two networks: the Generator (G) and the Discriminator (D),

each with its own loss function: J(G)( (G ),  (D)) and J(D)((G),  (D)), respectively.
 During training, the Generator and the Discriminator can tune only their own

parameters:  (G) and (D), respectively.
 The two GAN networks are trained simultaneously via a game-like dynamic. The

Generator seeks to maximize the Discriminator’s false-positive classifications
(classifying a generated image as real), while the Discriminator seeks to mini-
mize its false-positive and false-negative classifications.

Figure 3.7 Although far from perfect, our simple two-
layer Generator learned to produce realistic-looking 
numerals, such as 9 and 1.

Figure 3.8 Example of real handwritten digits from the 
MNIST dataset used to train our GAN. Although the Generator 
made impressive progress toward emulating the training 
data, the difference between the numerals it produces and 
the real, human-written numerals remains clear.



Deep Convolutional GAN
In the previous chapter, we implemented a GAN whose Generator and Discrimina-
tor were simple feed-forward neural networks with a single hidden layer. Despite
this simplicity, many of the images of handwritten digits that the GAN’s Generator
produced after being fully trained were remarkably convincing. Even the ones that
were not recognizable as human-written numerals had many of the hallmarks of
handwritten symbols, such as discernible line edges and shapes—especially when
compared to the random noise used as the Generator’s raw input.

 Imagine what we could accomplish with more powerful network architecture.
In this chapter, we will do just that: instead of simple two-layer feed-forward net-
works, both our Generator and Discriminator will be implemented as convolu-
tional neural networks (CNNs, or ConvNets). The resulting GAN architecture is
known as Deep Convolutional GAN, or DCGAN for short. 

This chapter covers
 Understanding key concepts behind convolutional 

neural networks

 Using batch normalization

 Implementing Deep Convolutional GAN, an 
advanced GAN architecture 
51
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 Before delving into the nitty-gritty of the DCGAN implementation, we will review
the key concepts underlying ConvNets, review the history behind the discovery of the
DCGAN, and cover one of the key breakthroughs that made complex architectures
like DCGAN possible in practice: batch normalization.

4.1 Convolutional neural networks
We expect that you’ve already been exposed to convolutional networks; that said, if
this technique is new to you, don’t worry. In this section, we review all the key concepts
you need for this chapter and the rest of this book.

4.1.1 Convolutional filters

Unlike a regular feed-forward neural network whose neurons are arranged in flat,
fully connected layers, layers in a ConvNet are arranged in three dimensions (width ×
height × depth). Convolutions are performed by sliding one or more filters over the
input layer. Each filter has a relatively small receptive field (width × height) but always
extends through the entire depth of the input volume. 

 At every step as it slides across the input, each filter outputs a single activation
value: the dot product between the input values and the filter entries. This process
results in a two-dimensional activation map for each filter. The activation maps pro-
duced by each filter are then stacked on top of one another to produce a three-
dimensional output layer; the output depth is equal to the number of filters used.

4.1.2 Parameter sharing

Importantly, filter parameters are shared by all the input values to the given filter. This
has both intuitive and practical advantages. Intuitively, parameter sharing allows us to
efficiently learn visual features and shapes (such as lines and edges) regardless of
where they are located in the input image. From a practical perspective, parameter
sharing drastically reduces the number of trainable parameters. This decreases the
risk of overfitting and allows this technique to scale up to higher-resolution images
without a corresponding exponential increase in trainable parameters, as would be
the case with a traditional, fully connected network.

4.1.3 ConvNets visualized

If all this sounds confusing, let’s make these concepts a little less abstract by visualizing
them. Diagrams make everything easier to understand for most people (us included!).
Figure 4.1 shows a single convolution operation; figure 4.2 illustrates the convolution
operation in the context of the input and output layers in a ConvNet.

 Figure 4.1 depicts the convolution operation for a single filter over a two-dimensional
input. In practice, the input volume is usually three-dimensional, and we use several
stacked filters. The underlying mechanics, however, remain the same: each filter pro-
duces a single value per step, regardless of the depth of the input volume. The number
of filters we use determines the depth of the output volume, as their resulting activa-
tion maps are stacked on top of one another. All this is illustrated in figure 4.2.
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NOTE If you would like to dive deeper into convolutional networks and the
underlying concepts, we recommend reading the relevant chapters in
François Chollet’s Deep Learning with Python (Manning, 2017), which provides
an outstanding, hands-on introduction to all the key concepts and techniques
in deep learning, including ConvNets. For those with a more academic bent,
a great resource is Andrej Karpathy’s excellent lecture notes from his Stanford
University class on Convolutional Neural Networks for Visual Recognition
(http://cs231n.github.io/convolutional-networks/).

Figure 4.1 A 3 × 3 convolutional filter as it slides over a 5 × 5 input—left to right, 
top to bottom. At each step, the filter moves by two strides; accordingly, it makes 
a total of four steps, resulting in a 2 × 2 activation map. Notice how at each step, 
the entire filter produces a single activation value. 
(Source: “A Guide to Convolution Arithmetic for Deep Learning,” by Vincent Dumoulin and 
Francesco Visin, 2016, https://arxiv.org/abs/1603.07285.)

ConvNet
filter

One
feature
map

All feature maps

Figure 4.2 An activation value for a single convolutional step within the context of 
the activation map (feature map) and the input and output volumes. Notice that the 
ConvNet filter extends through the full depth of the input volume and that the depth 
of the output volume is determined by stacking together activation maps. 
(Source: “Convolutional Neural Network,” by Nameer Hirschkind et al., Brilliant.org, retrieved 
November 1, 2018, http://mng.bz/8zJK.)

https://arxiv.org/abs/1603.07285
https://shortener.manning.com/8zJK
http://cs231n.github.io/convolutional-networks/
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4.2 Brief history of the DCGAN
Introduced in 2016 by Alec Radford, Luke Metz, and Soumith Chintala, DCGAN
marked one of the most important early innovations in GANs since the technique’s
inception two years earlier.1 This was not the first time a group of researchers tried
harnessing ConvNets for use in GANs, but it was the first time they succeeded at incor-
porating ConvNets directly into a full-scale GAN model.

 The use of ConvNets exacerbates many of the difficulties plaguing GAN training,
including instability and gradient saturation. Indeed, these challenges proved so
daunting that some researchers resorted to alternative approaches, such as the
LAPGAN, which uses a cascade of convolutional networks within a Laplacian pyramid,
with a separate ConvNet being trained at each level using the GAN framework.2 If
none of this makes sense to you, don’t worry. Superseded by superior methods,
LAPGAN has been largely relegated to the dustbin of history, so it is not important to
understand its internals. 

 Although inelegant, complex, and computationally taxing, LAPGAN yielded the
highest-quality images to date at the time of its publication, with fourfold improve-
ment over the original GAN (40% versus 10% of generated images mistaken for real
by human evaluators). As such, LAPGAN demonstrated the enormous potential of
marrying GANs with ConvNets.

 With DCGAN, Radford and his collaborators introduced techniques and optimiza-
tions that allowed ConvNets to scale up to the full GAN framework without the need
to modify the underlying GAN architecture and without reducing GAN to a subrou-
tine of a more complex model framework, like LAPGAN. One of the key techniques
Radford et al. used is batch normalization, which helps stabilize the training process
by normalizing inputs at each layer where it is applied. Let’s take a closer look at what
batch normalization is and how it works.

4.3 Batch normalization
Batch normalization was introduced by Google scientists Sergey Ioffe and Christian Sze-
gedy in 2015.3 Their insight was as simple as it was groundbreaking. Just as we normal-
ize network inputs, they proposed to normalize the inputs to each layer, for each
training mini-batch as it flows through the network.

 

1 See “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks,” by
Alec Radford et al., 2015, https://arxiv.org/abs/1511.06434.

2 See “Deep Generative Image Models Using a Laplacian Pyramid of Adversarial Networks,” by Emily Denton
et al., 2015, https://arxiv.org/abs/1506.05751.

3 See “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,” by
Sergey Ioffe and Christian Szegedy, 2015, https://arxiv.org/abs/1502.03167.

https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1506.05751
https://arxiv.org/abs/1502.03167
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4.3.1 Understanding normalization

It helps to remind ourselves what normalization is and why we bother normalizing the
input feature values in the first place. Normalization is the scaling of data so that it has
zero mean and unit variance. This is accomplished by taking each data point x, sub-
tracting the mean µ, and dividing the result by the standard deviation, , as shown in
equation 4.1:

        Equation 4.1

Normalization has several advantages. Perhaps most important, it makes comparisons
between features with vastly different scales easier and, by extension, makes the train-
ing process less sensitive to the scale of the features. Consider the following (rather
contrived) example. Imagine we are trying to predict the monthly expenditures of a
family based on two features: the family’s annual income and the family size. We
would expect that, in general, the more a family earns, the more they spend; and the
bigger a family is, the more they spend.

 However, the scales of these features are vastly different—an extra $10 in annual
income probably wouldn’t influence how much a family spends, but an additional 10
members would likely wreak havoc on any family’s budget. Normalization solves this
problem by scaling each feature value onto a standardized scale, such that each data
point is expressed not as its face value but as a relative “score” indicating how many
standard deviations the given data point is from the mean.

 The insight behind batch normalization is that normalizing inputs alone may not
go far enough when dealing with deep neural networks with many layers. As the input
values flow through the network, from one layer to the next, they are scaled by the
trainable parameters in each of those layers. And as the parameters get tuned by back-
propagation, the distribution of each layer’s inputs is prone to change in subsequent
training iterations, which destabilizes the learning process. In academia, this problem
is known as covariate shift. Batch normalization solves it by scaling values in each mini-
batch by the mean and variance of that mini-batch.

4.3.2 Computing batch normalization

The way batch normalization is computed differs in several respects from the simple
normalization equation we presented earlier. This section walks through it step by
step.

 Let µB be the mean of the mini-batch B, and B
2 be the variance (mean squared

deviation) of the mini-batch B. The normalized value  is computed as shown in
equation 4.2:

        Equation 4.2

x̂ x –


------------=

x̂

x̂
x B–

2 +
-------------------=
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The term  (epsilon) is added for numerical stability, primarily to avoid division by
zero. It is set to a small positive constant value, such as 0.001.

 In batch normalization, we do not use these normalized values directly. Instead, we
multiply them by  (gamma) and add  (beta) before passing them as inputs to the
next layer; see equation 4.3.

        Equation 4.3

Importantly, the terms  and  are trainable parameters, which—just like weights and
biases—are tuned during network training. The reason for this is that it may be bene-
ficial for the intermediate input values to be standardized around a mean other than 0
and have a variance other than 1. Because  and  are trainable, the network can learn
what values work best.

 Fortunately for us, we don’t have to worry about any of this. The Keras function
keras.layers.BatchNormalization handles all the mini-batch computations and
updates behind the scenes for us.

 Batch normalization limits the amount by which updating the parameters in the
previous layers can affect the distribution of inputs received by the current layer. This
decreases any unwanted interdependence between parameters across layers, which
helps speed up the network training process and increase its robustness, especially
when it comes to network parameter initialization. 

 Batch normalization has proven essential to the viability of many deep learning
architectures, including the DCGAN, which you will see in action in the following
tutorial.

4.4 Tutorial: Generating handwritten digits with DCGAN
In this tutorial, we will revisit the MNIST dataset of handwritten digits from chapter 3.
This time, however, we will use the DCGAN architecture and represent both the Gen-
erator and the Discriminator as convolutional networks, as shown in figure 4.3.
Besides this change, the rest of the network architecture remains unchanged. At the
end of the tutorial, we will compare the quality of the handwritten numerals pro-
duced by the two GANs (traditional versus DCGAN) so you can see the improvement
made possible by the use of a more advanced network architecture.

 As in chapter 3, much of the code in this tutorial was adapted from Erik Linder-
Norén’s open source GitHub repository of GAN models in Keras (https://github
.com/eriklindernoren/Keras-GAN), with numerous modifications and improvements
spanning both the implementation details and network architectures. A Jupyter note-
book with the full implementation, including added visualizations of the training
progress, is available in the GitHub repository for this book at https://github.com/
GANs-in-Action/gans-in-action, under the chapter-4 folder. The code was tested with
Python 3.6.0, Keras 2.1.6, and TensorFlow 1.8.0. To speed up the training time, it is
recommended to run the model on a GPU.

y x̂ +=

https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
https://github.com/GANs-in-Action/gans-in-action
https://github.com/GANs-in-Action/gans-in-action
https://github.com/GANs-in-Action/gans-in-action
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4.4.1 Importing modules and specifying model input dimensions

First, we import all the packages, modules, and libraries we need to train and run the
model. Just as in chapter 3, the MNIST dataset of handwritten digits is imported
directly from keras.datasets.

%matplotlib inline

import matplotlib.pyplot as plt
import numpy as np

from keras.datasets import mnist
from keras.layers import (
    Activation, BatchNormalization, Dense, Dropout, Flatten, Reshape)
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import Conv2D, Conv2DTranspose
from keras.models import Sequential
from keras.optimizers import Adam

We also specify the model input dimensions: the image shape and the length of the
noise vector z.

 
 

Listing 4.1 Import statements

x

x*

Discriminator

Generator

Classification

z

Figure 4.3 The overall model architecture for this chapter’s tutorial is the same as 
the GAN we implemented in chapter 3. The only differences (not visible on this high-
level diagram) are the internal representations of the Generator and Discriminator 
networks (the insides of the Generator and Discriminator boxes). These networks are 
covered in detail later in this tutorial.
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img_rows = 28
img_cols = 28
channels = 1

img_shape = (img_rows, img_cols, channels)    

z_dim = 100       

4.4.2 Implementing the Generator

ConvNets have traditionally been used for image classification tasks, in which the
network takes in an image with the dimensions height × width × number of color chan-
nels as input and—through a series of convolutional layers—outputs a single vector
of class scores, with the dimensions 1 × n, where n is the number of class labels. To
generate an image by using the ConvNet architecture, we reverse the process:
instead of taking an image and processing it into a vector, we take a vector and up-
size it to an image.

 Key to this process is the transposed convolution. Recall that regular convolution is
typically used to reduce input width and height while increasing its depth. Transposed
convolution goes in the reverse direction: it is used to increase the width and height
while reducing depth, as you can see in the Generator network diagram in figure 4.4.

The Generator starts with a noise vector z. Using a fully connected layer, we reshape
the vector into a three-dimensional hidden layer with a small base (width × height)
and large depth. Using transposed convolutions, the input is progressively reshaped
such that its base grows while its depth decreases until we reach the final layer with the

Listing 4.2 Model input dimensions

Input image 
dimensions

Size of the noise vector, used 
as input to the Generator

7 7 256� �
14 � �14 128 14 14�

� 64

28
�
28
�
1

Figure 4.4 The Generator takes in a random noise vector as input and produces a 28 × 28 × 1 image. It does 
so by multiple layers of transposed convolutions. Between the convolutional layers, we apply batch 
normalization to stabilize the training process. (Image is not to scale.) 
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shape of the image we are seeking to synthesize, 28 × 28 × 1. After each transposed
convolution layer, we apply batch normalization and the Leaky ReLU activation func-
tion. At the final layer, we do not apply batch normalization and, instead of ReLU, we
use the tanh activation function.

 Putting all the steps together, we do the following:

1 Take a random noise vector and reshape it into a 7 × 7 × 256 tensor through a
fully connected layer.

2 Use transposed convolution, transforming the 7 × 7 × 256 tensor into a 14 × 14
× 128 tensor.

3 Apply batch normalization and the Leaky ReLU activation function.
4 Use transposed convolution, transforming the 14 × 14 × 128 tensor into a 14 ×

14 × 64 tensor. Notice that the width and height dimensions remain unchanged;
this is accomplished by setting the stride parameter in Conv2DTranspose to 1.

5 Apply batch normalization and the Leaky ReLU activation function.
6 Use transposed convolution, transforming the 14 × 14 × 64 tensor into the out-

put image size, 28 × 28 × 1.
7 Apply the tanh activation function.

The following listing shows what the Generator network looks like when implemented
in Keras.

def build_generator(z_dim):

    model = Sequential()

    model.add(Dense(256 * 7 * 7, input_dim=z_dim))   
    model.add(Reshape((7, 7, 256)))

    model.add(Conv2DTranspose(128, kernel_size=3, strides=2, padding='same')) 

    model.add(BatchNormalization())   

    model.add(LeakyReLU(alpha=0.01))    

    model.add(Conv2DTranspose(64, kernel_size=3, strides=1, padding='same')) 

    model.add(BatchNormalization())    

    model.add(LeakyReLU(alpha=0.01))    

    model.add(Conv2DTranspose(1, kernel_size=3, strides=2, padding='same'))

    model.add(Activation('tanh'))        

    return model

Listing 4.3 DCGAN Generator

Reshapes input into 
7 × 7 × 256 tensor via 
a fully connected layer

ansposed
nvolution
yer, from
 7 × 256
 14 × 14
28 tensor

Batch 
normalization

aky ReLU
activation

ansposed
nvolution
, from 14

 × 128 to
 14 × 64

tensor

Batch normalization

Leaky ReLU activation

Transposed
convolution layer, from

14 × 14 × 64 to
28 × 28 × 1 tensor

Output layer 
with tanh 
activation
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4.4.3 Implementing the Discriminator

The Discriminator is a ConvNet of the familiar kind, one that takes in an image and
outputs a prediction vector: in this case, a binary classification indicating whether the
input image was deemed to be real rather than fake. Figure 4.5 depicts the Discrimi-
nator network we will implement.

The input to the Discriminator is a 28 × 28 × 1 image. By applying convolutions, the
image is transformed such that its base (width × height) gets progressively smaller
and its depth gets progressively deeper. On all convolutional layers, we apply the
Leaky ReLU activation function. Batch normalization is used on all convolutional lay-
ers except the first. For output, we use a fully connected layer and the sigmoid activa-
tion function.

 Putting all the steps together, we do the following:

1 Use a convolutional layer to transform a 28 × 28 × 1 input image into a 14 × 14 ×
32 tensor.

2 Apply the Leaky ReLU activation function.
3 Use a convolutional layer, transforming the 14 × 14 × 32 tensor into a 7 × 7 × 64

tensor.
4 Apply batch normalization and the Leaky ReLU activation function.
5 Use a convolutional layer, transforming the 7 × 7 × 64 tensor into a 3 × 3 × 128

tensor.
6 Apply batch normalization and the Leaky ReLU activation function.
7 Flatten the 3 × 3 × 128 tensor into a vector of size 3 × 3 × 128 = 1152.

28
�

28
�
1

14
�

14
�

32

7 7 64� �
3 3 128� �

�

Figure 4.5 The Discriminator takes in a 28 × 28 × 1 image as input, applies several convolutional 
layers, and—using the sigmoid activation function —outputs a probability that the input image is real 
rather than fake. Between the convolutional layers, we apply batch normalization to stabilize the 
training process. (Image is not to scale.)



61Tutorial: Generating handwritten digits with DCGAN

Ou
wit
8 Use a fully connected layer feeding into the sigmoid activation function to com-
pute the probability of whether the input image is real.

The following listing is a Keras implementation of the Discriminator model.

def build_discriminator(img_shape):

    model = Sequential()

    model.add(              
        Conv2D(32,
               kernel_size=3,
               strides=2,
               input_shape=img_shape,
               padding='same'))

    model.add(LeakyReLU(alpha=0.01))   

    model.add(                 
        Conv2D(64,
               kernel_size=3,
               strides=2,
               input_shape=img_shape,
               padding='same'))

    model.add(BatchNormalization())     

    model.add(LeakyReLU(alpha=0.01))     

    model.add(                
        Conv2D(128,
               kernel_size=3,
               strides=2,
               input_shape=img_shape,
               padding='same'))

    model.add(BatchNormalization())  

    model.add(LeakyReLU(alpha=0.01)) 

    model.add(Flatten())    
    model.add(Dense(1, activation='sigmoid'))

    return model

4.4.4 Building and running the DCGAN

Aside from the network architectures used for the Generator and the Discriminator,
the rest of the DCGAN network setup and implementation is the same as the one we
used for the simple GAN in chapter 3. This underscores the versatility of the GAN
architecture. Listing 4.5 code builds the model, and listing 4.6 trains the model.

Listing 4.4 DCGAN Discriminator 

Convolutional layer, from 28 × 28 
× 1 into 14 × 14 × 32 tensor

Leaky ReLU 
activation

Convolutional layer, 
from 14 × 14 × 32 
into 7 × 7 × 64 tensor

Batch 
normalization

Leaky ReLU 
activation

Convolutional layer, from 
7 × 7 × 64 tensor into 
3 × 3 × 128 tensor

Batch 
normalization

Leaky ReLU 
activation

tput layer
h sigmoid
activation
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Builds
Genera

G

def build_gan(generator, discriminator):

    model = Sequential()

    model.add(generator)        
    model.add(discriminator)

    return model

discriminator = build_discriminator(img_shape)     
discriminator.compile(loss='binary_crossentropy',
                      optimizer=Adam(),
                      metrics=['accuracy'])

generator = build_generator(z_dim)     

discriminator.trainable = False     

gan = build_gan(generator, discriminator)        
gan.compile(loss='binary_crossentropy', optimizer=Adam())

losses = []
accuracies = []
iteration_checkpoints = []

def train(iterations, batch_size, sample_interval):

    (X_train, _), (_, _) = mnist.load_data()       

    X_train = X_train / 127.5 - 1.0                  
    X_train = np.expand_dims(X_train, axis=3)

    real = np.ones((batch_size, 1))      

    fake = np.zeros((batch_size, 1))  

    for iteration in range(iterations):

       

        idx = np.random.randint(0, X_train.shape[0], batch_size)  
        imgs = X_train[idx]

        z = np.random.normal(0, 1, (batch_size, 100))   
        gen_imgs = generator.predict(z)

        d_loss_real = discriminator.train_on_batch(imgs, real)    
        d_loss_fake = discriminator.train_on_batch(gen_imgs, fake)

Listing 4.5 Building and compiling the DCGAN

Listing 4.6 DCGAN training loop

Combined Generator + 
Discriminator model

Builds and compiles 
the Discriminator

 the
tor Keeps Discriminator’s 

parameters constant 
for Generator training

Builds and compiles 
GAN model with fixed 
Discriminator to train 
the Generator

Loads the 
MNIST dataset

Rescales [0, 255] 
grayscale pixel values 
to [–1, 1]

Labels for real 
images: all 1s

Labels for fake 
images: all 0s

ets a random
batch of real

images

Generates a batch 
of fake images

Trains the
Discriminator
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        d_loss, accuracy = 0.5 * np.add(d_loss_real, d_loss_fake)
         

        z = np.random.normal(0, 1, (batch_size, 100))  
        gen_imgs = generator.predict(z)

        g_loss = gan.train_on_batch(z, real)      

        if (iteration + 1) % sample_interval == 0:

            losses.append((d_loss, g_loss))            
            accuracies.append(100.0 * accuracy)
            iteration_checkpoints.append(iteration + 1)

            print("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" %  
                  (iteration + 1, d_loss, 100.0 * accuracy, g_loss))

            sample_images(generator)    

For completeness, we are also including the sample_images() function in the follow-
ing listing. Recall from chapter 3 that this function outputs a 4 × 4 grid of images syn-
thesized by the Generator in a given training iteration.

def sample_images(generator, image_grid_rows=4, image_grid_columns=4):

    z = np.random.normal(0, 1, (image_grid_rows * image_grid_columns, z_dim))

    gen_imgs = generator.predict(z)   

    gen_imgs = 0.5 * gen_imgs + 0.5                   

    fig, axs = plt.subplots(image_grid_rows,        
                            image_grid_columns,
                            figsize=(4, 4),
                            sharey=True,
                            sharex=True)

    cnt = 0
    for i in range(image_grid_rows):
        for j in range(image_grid_columns):
            axs[i, j].imshow(gen_imgs[cnt, :, :, 0], cmap='gray')  
            axs[i, j].axis('off')
            cnt += 1

Next, the following code is used to run the model.
 
 

Listing 4.7 Displaying generated images

Generates a batch 
of fake images

Trains the 
Generator

Saves losses and accuracies 
so they can be plotted after 
training

Outputs
training

progress
Outputs a sample 
generated image

Sample
random

noise Generates images 
from random noise

Rescales
age pixel
alues to

[0, 1]
Sets image 
grid

utputs a
grid of
images
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iterations = 20000           
batch_size = 128
sample_interval = 1000

train(iterations, batch_size, sample_interval)     

4.4.5 Model output

Figure 4.6 shows a sample of handwritten digits produced by the Generator after the
DCGAN is fully trained. For a side-by-side comparison, figure 4.7 shows a sample of
digits produced by the GAN from chapter 3, and figure 4.8 shows a sample of real
handwritten numerals from the MNIST dataset.

As evidenced by the preceding figures, all the extra work we put into implementing
DCGAN paid off handsomely. Many of the images of handwritten digits that the net-
work produces after being fully trained are virtually indistinguishable from the ones
written by a human hand.

Listing 4.8 Running the model

Sets 
hyperparameters Trains the DCGAN for 

the specified number 
of iterations

Figure 4.6 A sample of handwritten digits 
generated by a fully trained DCGAN

Figure 4.7 A sample of handwritten digits 
generated by the GAN implemented in 
chapter 3

Figure 4.8 A randomly generated grid of real handwritten digits 
from the MNIST dataset used to train our DCGAN. Unlike the 
images produced by the simple GAN we implemented in chapter 3, 
many of the handwritten digits produced by the fully trained 
DCGAN are essentially indistinguishable from the training data.
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4.5 Conclusion
DCGAN demonstrates the versatility of the GAN framework. In theory, the Discrimi-
nator and Generator can be represented by any differentiable function, even one as
complex as a multilayer convolutional network. However, DCGAN also demonstrates
that there are significant hurdles to making more complex implementations work in
practice. Without breakthroughs such as batch normalization, DCGAN would fail to
train properly.

 In the following chapter, we will explore some of the theoretical and practical
limitations that make GAN training so challenging as well as the approaches to over-
come them.

Summary
 Convolutional neural networks (ConvNets) use one or more convolutional fil-

ters that slide over the input volume. At each step as it slides over the input, a
filter uses a single set of parameters to produce a single activation value.
Together, all the activation values from all the filters produce the output layer.

 Batch normalization is a method that reduces the covariate shift (variations in
input value distributions between layers during training) in neural networks by
normalizing the output of each layer before it is passed as input to the next layer.

 Deep Convolutional GAN (DCGAN) is a Generative Adversarial Network with
convolutional neural networks as its Generator and Discriminator. This archi-
tecture achieves superior performance in image-processing tasks, including
handwritten digit generation, which we implemented in a code tutorial.





Part 2

Advanced topics in GANs

Part 2 explores a selection of advanced topics in GANs. Building on the foun-
dational concepts from part 1, you will deepen your theoretical understanding
of GANs and expand your practical toolkit of GAN implementations:

■ Chapter 5 covers many of the theoretical and practical hurdles to training
GANs and how to overcome them.

■ Chapter 6 presents a groundbreaking training methodology called Progres-
sive GAN that has enabled GANs to synthesize images with unprecedented
resolution.

■ Chapter 7 covers the use of GANs in semi-supervised learning (methods
of training classifiers with only a small fraction of labeled examples), an
area of immense practical importance.

■ Chapter 8 introduces the Conditional GAN, a technique that enables tar-
geted data generation by using labels (or other conditioning information)
while training the Generator and Discriminator.

■ Chapter 9 explores the CycleGAN, a general-purpose technique for
image-to-image translation—turning one image (such as a photo of an
apple) into another (such as a photo of an orange).





Training and
common challenges:
GANing for success
NOTE When reading this chapter, please remember that GANs are notori-
ously hard to both train and evaluate. As with any other cutting-edge field,
opinions about what is the best approach are always evolving.

Papers such as “How to Train Your DRAGAN” are a testament to both the incredi-
ble capacity of machine learning researchers to make bad jokes and the difficulty of
training Generative Adversarial Networks well. Dozens of arXiv papers preoccupy
themselves solely with the aim of improving the training of GANs, and numerous
workshops have been dedicated to various aspects of training at top academic con-
ferences (including Neural Information Processing Systems, or NIPS, one of the
prominent machine learning conferences1).

This chapter covers
 Meeting the challenges of evaluating GANs

 Min-Max, Non-Saturating, and Wasserstein GANs

 Using tips and tricks to best train a GAN

1 NIPS 2016 featured a workshop on GAN training with many important researchers in the field, which this
chapter was based on. NIPS has recently changed its abbreviation to NeurIPS.
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 But GAN training is an evolving challenge, and so a lot of resources—including
those presented through papers and conferences—now need a certain amount of
updating. This chapter provides a comprehensive yet up-to-date overview of training
techniques. In this chapter, you also finally get to experience something no one has ever
been known to hate—math. (But we promise not to use more than strictly necessary.) 

 Jokes aside, however, as the first chapter in the “Advanced Topics in GANs” section
of this book, this is quite a dense chapter. We recommend that you go back and try
some of the models with several parameters. Then you can return to this chapter, as
you should be reading it with a strong understanding of not just what each part of a
GAN does, but also the challenges in training them from your own experience. 

 Like the other chapters in this advanced section, this chapter is here to teach you
as well as to provide a useful reference for at least a couple of years to come. There-
fore, this chapter is a summary of the tips and tricks from people’s experiences, blog
posts, and most relevant papers. (If academia is not your cup of tea, now is the time to
get out those doodling pens and scribble over the footnotes.) We look at this chapter
as a short academic intermission that will give you a clear map indicating all the amaz-
ing present and future developments of GANs.

 We also hope to thereby equip you with all the basic tools to understand the vast
majority of new papers that may come out. In many books, this would be presented as
pros and cons lists that would not give readers the full high-level understanding of the
choices. But because GANs are such a new field, simple lists are not possible, as the lit-
erature has still not agreed on some aspects conclusively. GANs are also a fast-growing
field, so we would much prefer to equip you with the ability to navigate it, rather than
give you information that is likely to soon be outdated.

 With the purpose of this chapter explained, let’s clarify where GANs sit again. Fig-
ure 5.1 expands on the diagram from chapter 2 and shows the taxonomy of the mod-
els so you can understand what other generative techniques exist and how (dis)similar
they are.

 There are two key takeaways from this diagram:

 All of these generative models ultimately derive from Maximum Likelihood, at
least implicitly.

 The variational autoencoder introduced in chapter 2 sits in the Explicit part of
the tree. Remember that we had a clear loss function (the reconstruction loss)?
Well, with GANs we do not have it anymore. Rather, we now have two compet-
ing loss functions that we will cover in lot more depth later. But as such, the sys-
tem does not have a single analytical solution.

If you know any of the other techniques pictured, that’s great. The key idea is that we
are moving away from explicit and tractable, into the territory of implicit approaches
toward training. However, by now you should be wondering: if we do not have an
explicit loss function (even though we have the two separate losses encountered
implicitly in the “Conflicting objectives” section of chapter 3), how do we evaluate a
GAN? What if you’re running parallel, large-scale experiments?
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To clear up potential confusion, not all the techniques in figure 5.1 come from deep
learning, and we certainly do not need you to know any of them, other than VAEs and
GANs!

5.1 Evaluation
Let's revisit the chapter 1 analogy about forging a da Vinci painting. Imagine that a
forger (Generator) is trying to mimic da Vinci, to get the forged painting accepted at
an exhibition. This forger is competing against an art critic (Discriminator) who is try-
ing to accept only real work into the exhibition. In this circumstance, if you are the
forger who is aiming to create a “lost piece” by this great artist in order to fool the
critic with a flawless impersonation of da Vinci’s style, how would you evaluate how
well you’re doing? How would each actor evaluate their performance? 

 GANs are trying to solve the problem of never-ending competition between the
forger and the art critic. Indeed, given that typically the Generator is of greater inter-
est than the Discriminator, we should think about its evaluation extra carefully. But
how would we quantify the style of a great painter or how closely we imitate it? How
would we quantify the overall quality of the generation?

…

Maximum likelihood

Explicit density

Tractable density

• Fully visible belief nets
• NADE
• MADE
• PixelRNN
• Change of variables
models (nonlinear ICA)

Approximate density

Variational

Variational
autoencoder

Boltzmann
machine

Markov chain

Implicit density

Markov chain

Direct

GAN

GSN

Taxonomy of generative models

Figure 5.1 Where do GANs fit in? 
(Source: “Generative Adversarial Networks (GANs),” by Ian Goodfellow, NIPS 2016 tutorial, http://mng.bz/4O0V.)

https://shortener.manning.com/4O0V
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5.1.1 Evaluation framework

The best solution would be to have da Vinci paint all the paintings that are possible to
paint, using his style, and then see whether the image generated using a GAN would
be somewhere in that collection. You can think of this process as a nonapproximate
version of maximum likelihood maximization. In fact, we would know that the image
either is or is not in this set, so no likelihood is involved. However, in practice, this
solution is never really possible.

 The next best thing would be to assess the image and point to instances of what to
look for and then add up the number of errors or artifacts. But these will be highly local-
ized and ultimately would always require a human critic to look at the art piece itself. It
is a fundamentally nonscalable—although probably the second best—solution. 

 We want to have a statistical way of evaluating the quality of the generated samples,
because that would scale and would allow us to evaluate as we are experimenting. If we
do not have an easy metric to calculate, we also cannot monitor progress. This is a
problem especially for evaluating different experiments—imagine measuring or even
backpropagating with a human in the loop at each, for example, hyperparameter ini-
tialization. This is especially a problem, given that GANs tend to be quite sensitive to
hyperparameters. So not having a statistical metric is difficult, because we’d have to
check back with humans every time we want to evaluate the quality of training. 

 Why don’t we just use something that we already understand, such as maximum
likelihood? It is statistical and measures something vaguely desirable, and we implicitly
derive from it anyway. Despite this, maximum likelihood is difficult to use because we
need to have a good estimate of the underlying distribution and its likelihood—and
that may mean more than billions of images.2 There are also reasons to want to go
beyond maximum likelihood, even if we just had a good sample—which is what we
effectively have with the training set.

 What else is wrong with maximum likelihood? After all, it is a well-established met-
ric in much of the machine learning research. Generally, maximum likelihood has
lots of desirable properties, but as we have touched on, using it is not tractable as an
evaluation technique for GANs. 

 Furthermore, in practice, approximations of maximum likelihood tend to overgen-
eralize and therefore deliver samples that are too varied to be realistic.3 Under maxi-
mum likelihood, we may find samples that would never occur in the real world, such as
a dog with multiple heads or a giraffe with dozens of eyes but no body. But because we
don’t want GAN violence to give anyone nightmares, we should probably weed out sam-
ples that are “too general,” using a loss function and/or the evaluation method. 

 Another way to think about overgeneralization is to start with a probability distri-
bution of fake and real data (for example, images) and look at what the distance func-
tions (a way to measure distance between real and fake images’ distributions) would

2 We give the problems of dimensionality better treatment in chapter 10.
3 See “How (Not) to Train your Generative Model: Scheduled Sampling, Likelihood, Adversary?” by Ferenc

Huszár, 2015, http://arxiv.org/abs/1511.05101.

http://arxiv.org/abs/1511.05101
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do in cases where there should be zero probability mass. The additional loss due to
these overgeneral samples could be tiny if they are not too different, for example,
because these modes are close to real data in all but a few key problems such as multi-
ple heads. An overgeneral metric would therefore allow creation of samples even
when, according to the true data-generating process, there should not be any, such as
a cow with multiple heads.

 That is why researchers felt that we need different evaluation principles even
though what we are effectively doing is always maximizing likelihood. We are just mea-
suring it in different ways. For those curious, KL divergence and JS divergence—
which we will visit in a bit—are also based on maximum likelihood, so here we can
treat them as interchangeable.

 Thus you now understand that we have to be able to evaluate a sample and that we
cannot simply use maximum likelihood to do this. In the following pages, we will talk
about the two most commonly used and accepted metrics for statistically evaluating
the quality of the generated samples: the inception score (IS) and Fréchet inception distance
(FID). The advantage of those two metrics is that they have been extensively validated
to be highly correlated with at least some desirable property such as visual appeal or
realism of the image. The inception score was designed solely around the idea that
the samples should be recognizable, but it has also been shown to correlate with
human intuition about what constitutes a real image, as validated by Amazon Mechan-
ical Turkers.4

5.1.2 Inception score

We clearly need a good statistical evaluation method. Let’s start from a high-level wish
list of what our ideal evaluation method would ensure:

 The generated samples look like some real, distinguishable thing—for exam-
ple, buckets or cows. The samples look real, and we can generate samples of
items in our dataset. Moreover, our classifier is confident that what it sees is an
item it recognizes. Luckily, we already have computer vision classifiers that are
able to classify an image as belonging to a particular class, with certain confi-
dence. Indeed, the score itself is named after the Inception network, which is
one of those classifiers.

 The generated samples are varied and contain, ideally, all the classes that were
represented in the original dataset. This point is also highly desirable because
our samples should be representative of the dataset we gave it; if our MNIST-
generating GAN is always missing the number 8, we would not have a good gen-
erative model. We should have no interclass (between classes) mode collapse.5

4 Amazon Mechanical Turk is a service that allows you to purchase people’s time by the hour to work on a pre-
specified task. It’s something like on-demand freelancers or Task Rabbit, but only online.

5 See “An Introduction to Image Synthesis with Generative Adversarial Nets,” by He Huang et al., 2018,
https://arxiv.org/pdf/1803.04469.pdf. 

https://arxiv.org/pdf/1803.04469.pdf
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Although we might have further requirements of our generative model, this is a
good start.

 The inception score (IS) was first introduced in a 2016 paper that extensively vali-
dated this metric and confirmed that it indeed correlates with human perceptions of
what constitutes a high-quality sample.6 This metric has since become popular in the
GAN research community.

 We have explained why we want to have this metric. Now let’s dive into the techni-
cal details. Computing the IS a simple process:

1 We take the Kullback–Leibler (KL) divergence between the real and the gener-
ated distribution.7

2 We exponentiate the result of step 1.

Let’s look at an example: a failure mode in an Auxiliary Classifier GAN (ACGAN),8

where we were trying to generate examples of daisies from the ImageNet dataset.
When we ran the Inception network on the following ACGAN failure mode, we saw
something like figure 5.2; your results may differ, depending on your OS, TensorFlow
version, and implementation details.

6 See “Improved Techniques for Training GANS,” by Tim Salimans et al., 2016, https://arxiv.org/pdf/
1606.03498.pdf.

7 We introduced KL divergence in chapter 2.
8 See “Conditional Image Synthesis with Auxiliary Classifier GANs,” by Augustus Odena et al., 2017, https://

arxiv.org/pdf/1610.09585.pdf.

Image Category Score

daisy 0.05646

book jacket, dust cover, dust

jacket, dust wrapper

0.05086

goldfish, Carassius auratus 0.04913

hummingbird 0.02358

panpipe, pandean pipe, syrinx 0.02029

Figure 5.2 ACGAN failure mode. Scores on the right indicate the softmax output. 
(Source: Odena, 2017, https://arxiv.org/pdf/1610.09585.pdf.)

https://arxiv.org/pdf/1610.09585.pdf
https://arxiv.org/pdf/1606.03498.pdf
https://arxiv.org/pdf/1606.03498.pdf
https://arxiv.org/pdf/1606.03498.pdf
https://arxiv.org/pdf/1610.09585.pdf
https://arxiv.org/pdf/1610.09585.pdf
https://arxiv.org/pdf/1610.09585.pdf
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The important thing to note here is that the Inception classifier is not certain what
it’s looking at, especially among the first three categories. Humans would work out
that it’s probably a flower, but even we are not sure. Overall confidence in the pre-
dictions is also quite low (scores go up to 1.00). This is an example of something
that would receive a low IS, which matches our two requirements from the start
of the section. Thus, our metrics journey has been a success, as this matches our
intuition.

5.1.3 Fréchet inception distance

The next problem to solve is the lack of variety of examples. Frequently, GANs learn
only a handful of images for each class. In 2017, a new solution was proposed: the
Fréchet inception distance (FID).9 The FID improves on the IS by making it more robust
to noise and allowing the detection of intraclass (within class) sample omissions. 

 This is important, because if we accept the IS baseline, then producing only one
type of a category technically satisfies the category-being-generated-sometimes
requirement. But, for example, if we are trying to create a cat-generation algorithm,
this is not actually what we want (say, if we had multiple breeds of cats represented).
Furthermore, we want the GAN to output samples that present a cat from more than
one angle and, generally, images that are distinct.

 We equally do not want the GAN to simply memorize the images. Luckily, that is
much easier to detect—we can look at the distance between images in pixel space. Fig-
ure 5.3 shows what that may look like. Technical implementation of the FID is again
complex, but the high-level idea is that we are looking for a generated distribution of
samples that minimizes the number of modifications we have to make to ensure that
the generated distribution looks like the distribution of the true data.

 The FID is calculated by running images through an Inception network. In prac-
tice, we compare the intermediate representations—feature maps or layers—rather
than the final output (in other words, we embed them). More concretely, we evaluate
the distance of the embedded means, the variances, and the covariances of the two
distributions—the real and the generated one. 

 To abstract away from images, if we have a domain of well-understood classifiers,
we can use their predictions as a measure of whether this particular sample looks real-
istic. To summarize, the FID is a way of abstracting away from a human evaluator and
allows us to reason statistically, in terms of distributions, even about things as difficult
to quantify as the realism of an image.

 
 

9 See “GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium,” by Martin Heusel
et al., 2017, http://arxiv.org/abs/1706.08500.

http://arxiv.org/abs/1706.08500
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Cat

Deer

Figure 5.3 The GAN picks up on the patterns by mostly memorizing the items, which also creates 
an undesirable outcome indicating that the GAN has not learned much useful information and will 
most likely not generalize. The proof is in the images. The first two rows are pairs of duplicate 
samples; the last row is the nearest neighbor of the middle row in the training set. Note that these 
examples are very low resolution as they appear in the paper, due to a low-resolution GAN setup. 
(Source: “Do GANs Actually Learn the Distribution? An Empirical Study,” by Sanjeev Arora and Yi Zhang, 2017, 
https://arxiv.org/pdf/1706.08224v2.pdf.)

Ship

Truck

https://arxiv.org/pdf/1706.08224v2.pdf
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Because this metric is so new, it is still worth waiting to see whether a flaw may be
revealed in a later paper. But given the number of reputable authors who have already
started using this metric, we decided to include it.10

5.2 Training challenges
Training a GAN can be complicated, and we will walk you through the best practices.
But here we provide only a high-level, accessible set of explanations that do not deep
dive into any of the mathematics that proves the theorems or shows the evidence,
because the details are beyond the scope of this book. But we encourage you to go to
the sources and decide for yourself. Frequently, the authors even provide code sam-
ples to help you get started. 

 Here is a list of the main problems:

 Mode collapse—In mode collapse, some of the modes (for example, classes) are not
well represented in the generated samples. The mode collapses even though
the real data distribution has support for the samples in this part of the distribu-
tion; for example, there will be no number 8 in the MNIST dataset. Note that
mode collapse can happen even if the network has converged. We talked about
interclass mode collapse during the explanation of the IS and intraclass mode
collapse when discussing the FID.

 Slow convergence—This is a big problem with GANs and unsupervised settings, in
which generally the speed of convergence and available compute are the main
constraints—unlike with supervised learning, in which available labeled data is
typically the first barrier. Moreover, some people believe that compute, not
data, is going to be the determining factor in the AI race in the future. Plus,
everyone wants fast models that do not take days to train.

 Overgeneralization—Here, we talk especially about cases in which modes (poten-
tial data samples) that should not have support (should not exist), do. For
example, you might see a cow with multiple bodies but only one head, or vice
versa. This happens when the GAN overgeneralizes and learns things that
should not exist based on the real data.

Note that mode collapse and overgeneralization can sometimes most naively be
resolved by reinitializing the algorithm, but such an algorithm is fragile, which is bad.
This list gives us, broadly, two key metrics: speed and quality. But even these two met-
rics are similar, as much of training is ultimately focused on closing the gap between
the real and the generated distribution faster.

 

10 See “Is Generator Conditioning Causally Related to GAN Performance?” by Augustus Odena et al., 2018,
http://arxiv.org/abs/1802.08768. See also S. Nowozin (Microsoft Research) talk at UCL, February 10, 2018. 

http://arxiv.org/abs/1802.08768
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 So how do we resolve this? When it comes to GAN training, several techniques can
help us improve the training process, just as you would with any other machine learn-
ing algorithm:

 Adding network depth
 Changing the game setup

– Min-Max design and stopping criteria that were proposed by the original paper
– Non-Saturating design and stopping criteria that were proposed by the origi-

nal paper11

– Wasserstein GAN as a recent improvement 
 Number of training hacks with commentary

– Normalizing the inputs
– Penalizing the gradients
– Training the Discriminator more
– Avoiding sparse gradients
– Changing to soft and noisy labels

5.2.1 Adding network depth

As with many machine learning algorithms, the easiest way to make learning more sta-
ble is to reduce the complexity. If you can start with a simple algorithm and iteratively
add to it, you get more stability during training, faster convergence, and potentially
other benefits. Chapter 6 explores this idea in more depth.

 You could quickly achieve stability with both a simple Generator and Discriminator
and then add complexity as you train, as explained in one of the most mind-blowing
GAN papers.12 Here, the authors from NVIDIA progressively grow the two networks so
that at the end of each training cycle, we double the output size of the Generator and
double the input of the Discriminator. We start with two simple networks and train
until we achieve good performance. 

 This ensures that rather than starting with a massive parameter space, which is
orders of magnitude larger than the initial input size, we start by generating an image
of 4 × 4 pixels and navigating this parameter space before doubling the size of the out-
put. We repeat this until we reach images of size 1024 × 1024. 

 See how impressive this is for yourself; both the pictures in figure 5.4 are gener-
ated. Now we are moving beyond the blurry 64 × 64 images that autoencoders can
generate.

 This approach has these advantages: stability, speed of training, and, most impor-
tantly, the quality of the samples produced as well as their scale. Although this
paradigm is new, we expect more and more papers to use it. You should definitely

11 See “Generative Adversarial Networks,” by Ian Goodfellow et al., 2014, http://arxiv.org/abs/1406.2661.
12 See “Progressive Growing of GANs for Improved Quality, Stability, and Variation,” by Tero Karras et al., 2017,

http://arxiv.org/abs/1710.10196.

http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1710.10196
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experiment with it also, because it is a technique that can be applied to virtually any
type of GAN. 

5.2.2 Game setups

One way to think about the two-player competitive nature of GANs is to imagine that
you are playing the game of Go or any other board game that can end at any point,
including chess. (Indeed, this borrows from DeepMind’s approach to AlphaGo and its
split into policy and value network.) As a player, you need to be able to not only know
the game’s objective and therefore what both players are trying to accomplish, but
also understand how close you are to victory. So you have rules and you have a distance
(victory) metric—for example, the number of pawns lost. 

 But just as not every board-game victory metric applies equally well to every game,
some GAN victory metrics—distances or divergences—tend to be used with particular
game setups and not with others. It is worth examining each loss function (victory
metrics) and the player dynamics (game setup) separately. 

 Here, we start to introduce some of the mathematical notation that describes the
GAN problem. The equations are important, and we promise we won’t scare you with
any more than necessary. The reason we introduce them is to give you a high-level
understanding as well as equip you with the tools to understand what a lot of GAN
researchers still do not seem to distinguish. (Maybe they should train the Discrimina-
tor in their head—oh, well.)

5.2.3 Min-Max GAN

As we explained earlier in this book, you can think of the GAN setup from a game-
theoretical point of view, where you have two players trying to outplay each other. But

Figure 5.4 Full HD images generated by GANs. You may consider this a 
teaser for the next chapter, where you will be rewarded for all your hard 
work in this one. 
(Source: Karras et al., 2017, https://arxiv.org/abs/1710.10196.)

https://arxiv.org/abs/1710.10196
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even the original 2014 paper mentioned that there are two versions of the game. In
principle, the more understandable and the more theoretically well-grounded
approach is exactly the one we described: just consider the GAN problem a min-max
game. Equation 5.1 describes the loss function for the Discriminator.

                Equation 5.1

The Es stand for expectation over either x (true data distribution) or z (latent space),
D stands for the Discriminator’s function (mapping image to probability), and G stands
for the Generator’s function (mapping latent vector to an image). This first equation
should be familiar from any binary classification problem. If we give ourselves some
freedom and get rid of the complexity, we can rewrite this equation as follows:

This states that the Discriminator is trying to minimize the likelihood of mistaking a
real sample for a fake one (first part) or a fake sample for a real one (the second
part). 

 Now let’s turn our attention to the Generator’s loss function in equation 5.2.

                Equation 5.2

Because we have only two agents and they are competing against each other, it makes
sense that the Generator’s loss would be a negative of the Discriminator’s.

 Putting it all together: we have two loss functions, and one is the negative value of
the other. The adversarial nature is clear. The Generator is trying to outsmart the Dis-
criminator. As for the Discriminator, remember that it is a binary classifier. The Discrim-
inator also outputs only a single number—not the binary class—so it’s punished for its
confidence or lack thereof. The rest is just some fancy math to give us nice properties
such as asymptotic consistency to the Jensen–Shannon divergence (which is a great
phrase to memorize if you’re trying to curse someone). 

 We previously explained why we typically don’t use maximum likelihood. Instead,
we use measures such as the KL divergence and the Jensen–Shannon divergence
(JSD) and, more recently the earth mover’s distance, also known as Wasserstein dis-
tance. But all these divergences help us understand the difference between the real
and the generated distribution. For now, just think of the JSD as a symmetric version
of the KL divergence, which we introduced in chapter 2.

DEFINITION Jensen-Shannon divergence (JSD) is a symmetric version of KL diver-
gence. Whereas KL(p,q)! = KL(q,p), it is the case that JSD(p,q) == JSD(q,p).

For those of you who want more detail, KL divergence, as well as JSD, are generally
regarded as what GANs are ultimately trying to minimize. These are both types of

J D Ex p r
D x  log Ez p g

1 D G z  – log+=

J D D x  D G z     for D x  D G z   0 1 –=
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distance metrics that help us understand how different the two distributions are in a
high-dimensional space. Some neat proofs connect those divergences and the min-
max version of the GAN; however, these concerns are too academic for this book. If
this paragraph makes little sense, you’re not having a stroke; don’t worry. It’s just stat-
istician things.

 We typically do not use the Min-Max GAN (MM-GAN) beyond the nice theoretical
guarantees it gives us. It serves as a neat theoretical framework to understand GANs:
both as a game-theoretical concept—stemming from the competitive nature between the
two networks/players—as well as an information-theoretical one. Beyond that, there are
ordinarily no advantages to the MM-GAN. Typically, only the next two setups are used.

5.2.4 Non-Saturating GAN 

In practice, it frequently turns out that the min-max approach creates more problems,
such as slow convergence for the Discriminator. The original GAN paper proposes an
alternative formulation: Non-Saturating GAN (NS-GAN). In this version of the prob-
lem, rather than trying to put the two loss functions as direct competitors of each
other, we make the two loss functions independent, as shown in equation 5.3, but
directionally consistent with the original formulation (equation 5.2). 

 Again, let’s focus on a general understanding: the two loss functions are no longer
set directly against each other. But in equation 5.3, you can see that the Generator is
trying to minimize the opposite of the second term of the Discriminator in equation 5.4.
Basically, it is trying not to get caught for the samples that it generates.

          Equation 5.3

          Equation 5.4

The intuition for the Discriminator is the exact same as it was before—equation 5.1
and equation 5.4 are identical, but the equivalent of equation 5.2 has now changed.
The main reason for the NS-GAN is that in the MM-GAN’s case, the gradients can eas-
ily saturate—get close to 0, which leads to slow convergence, because the weight
updates that are backpropagated are either 0 or tiny. Perhaps a picture would make
this clearer; see figure 5.5.

 You can see that around 0.0, the gradient of both maximum likelihood and
MM-GAN is close to 0, which is where a lot of early training happens, whereas the
NS-GAN has a lot higher gradient there, so training should happen much more
quickly at the start.

 We don’t have a good theoretical understanding of why the NS variant should con-
verge to the Nash equilibrium. In fact, because the NS-GAN is heuristically motivated,
using this form no longer gives us any of the neat mathematical guarantees we used to
get; see figure 5.6. Because of the complexity of the GAN problem, however, even in
the NS-GAN’s case, there is a chance that the training might not converge at all,
although it has been empirically shown to perform better than the MM-GAN.

J G Ez p g
D G z   log=

J D Ex p r
D x  log Ez p g

1 D G z  – log+=
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But our dreadful sacrifice leads to significant improvement in performance. The neat
thing about the NS approach is not only that the initial training is faster, but also,
because the Generator learns faster, the Discriminator learns faster too. This is desir-
able, because (almost) all of us are on a tight computational and time budget, and the
faster we can learn, the better. Some argue that the NS-GAN has not yet been sur-
passed on a fixed computational budget, and even Wasserstein GAN is not conclu-
sively a better architecture.13

13 See “Are GANs Created Equal? A Large-Scale Study,” by Mario Lucic et al., 2017, http://arxiv.org/abs/
1711.10337.
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Figure 5.5 A sketch of what the hypothesized relationships are meant to look like 
in theory. The y-axis is the loss function for the Generator, whereas D(G(z)) is the 
Discriminator’s “guess” for the likelihood of the generated sample. You can see that 
Minimax (MM) stays flat for too long, thereby giving the Generator too little 
information—the gradients vanish. 
(Source: “Understanding Generative Adversarial Networks,” by Daniel Seita, 2017, 
http://mng.bz/QQAj.)
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Figure 5.6 A moment of silence, please.
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5.2.5 When to stop training

Strictly speaking, the NS-GAN

 Is no longer asymptotically consistent with the JSD
 Has an equilibrium state that theoretically is even more elusive 

The first point is important, because the JSD is a meaningful tool in explaining why
an implicitly generated distribution should even converge at all to the real data distri-
bution. In principle, this gives us stopping criteria; but in practice, this is almost point-
less, because we can never verify when the true distribution and the generated
distribution have converged. People typically decide when to stop by looking at the
generated samples every couple of iterations. More recently, some people have started
looking at defining stopping criteria by FID, IS, or the less popular sliced Wasserstein
distance. 

 The second point is also important because the instability obviously causes training
problems. One of the more important questions is knowing when to stop. In the two
original formulations of the GAN problem, we are never given a clear set of condi-
tions under which the training has finished in practice. In principle, we are always told
that once we reach Nash equilibrium, the training is done, but in practice this is again
hard to verify, because the high dimensionality makes equilibrium difficult to prove. 

 If you want to plot the loss functions of the Generator and the Discriminator, they
would typically jump all over the place. This makes sense because they’re competing
against each other, so if one gets better, the other one gets a larger loss. Just by looking
at the two loss functions, it is unclear when we’ve actually finished training. 

 In the NS-GAN’s defense, it should be said that it is still much faster than the
Wasserstein GAN. As a result, the NS-GAN may get over these limitations by being able
to run more quickly.

5.2.6 Wasserstein GAN

Recently, a new development in GAN training has emerged and quickly reached aca-
demic popularity: Wasserstein GAN (WGAN).14 It is now mentioned by virtually every
major academic paper and many practitioners. Ultimately, the WGAN is important for
three reasons:

 It significantly improves on the loss functions, which are now interpretable and
provide clearer stopping criteria.

 Empirically, the WGAN tends to have better results. 
 Unlike a lot of research into GANs, it has clear theoretical backing that starts

from the loss and shows how the KL divergence that we are trying to approxi-
mate is ultimately not well justified theoretically or practically. Based on this
theory, it then proposes a better loss function that mitigates this problem.

14 See “Wasserstein GAN,” by Martin Arjovsky et al., 2017, https://arxiv.org/pdf/1701.07875.pdf.

https://arxiv.org/pdf/1701.07875.pdf
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The importance of the first point should be fairly obvious from the previous section.
Given the competitive nature between Generator and Discriminator, we don’t have a
clear point at which we want to stop training. The WGAN uses the earth mover’s dis-
tance as a loss function that clearly correlates with the visual quality of the samples
generated. The benefits of the second and third points are somewhat obvious—we
want to have higher-quality samples and better theoretical grounding.

 How is this magic achieved? Let’s look at the Wasserstein loss for the Discrimina-
tor—or the critic, as the WGAN calls it—in more detail. Take a look at equation 5.5. 

          Equation 5.5

This equation is somewhat similar to what you have seen before (as a high-level simpli-
fication of equation 5.1), with some important differences. We now have the function
fw, which acts as a Discriminator. The critic is trying to estimate the earth mover’s dis-
tance, and looks for the maximum difference between the real (first term) and the
generated (second term) distribution under different (valid) parametrizations of the
fw function. And we are now simply measuring the difference. The critic is trying to
make the Generator’s life the hardest it could be by looking at different projections
using fw into shared space in order to maximize the amount of probability mass it has
to move.

 Equation 5.6 shows the Generator, as it now has to include the earth mover’s distance.

          Equation 5.6

On a high level, in this equation we are trying to minimize the distance between the
expectation of the real distribution and the expectation of the generated distribution.
The paper that introduced the WGAN itself is complex, but the gist is that fw is a func-
tion satisfying a technical constraint. 

NOTE The technical constraint that fw satisfies is 1 – Lipschitz: for all x1, x2:
| f(x1) – f(x2) |  | x1 – x2 |.

The problem that the Generator is trying to solve is similar to the one before, but let’s
go into more detail anyway:

1 We draw x from either the real distribution (x ~ Pr) or the generated distribu-
tion x* (g(z), where z ~ p(z)). 

2 The generated samples are sampled from z (the latent space) and then trans-
formed via g to get the samples (x*) in the same space and then evaluated
using fw. 

3 We are trying to minimize our loss function—or distance function, in this
case—the earth mover’s distance. The actual numbers are calculated using the
earth mover’s distance, which we will explain later. 

maxEx P r
fw x   Ez p z  fw g z   –

minEx P r
fw x   Ez p z  fw g z   –
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The setup is also great because we have a much more understandable loss (for exam-
ple, no logarithms). We also have more tunable training, because in WGAN settings,
we have to set a clipping constant, which acts a lot like a learning rate in standard
machine learning. This gives us an extra parameter to tune, but that can be a double-
edged sword, if your GAN architecture ends up being very sensitive to it. But without
going into the mathematics too much, the WGAN has two practical implications: 

 We now have clearer stopping criteria because this GAN has been validated by
later papers that show a correlation between the Discriminator loss and the per-
ceptual quality. We can simply measure the Wasserstein distance, and that helps
inform when to stop.

 We can now train the WGAN to convergence. This is relevant because meta-
review papers15 showed that using the JS loss and the divergence between the
Generator in the real distribution as a measure of training progress can often
be meaningless.16 To translate that into human terms, sometimes in chess, you
need to lose a couple of rounds and therefore temporarily do worse in order to
learn in a couple of iterations and ultimately do better.

This may sound like magic. But this is partially because the WGAN is using a different
distance metric than anything you’ve encountered so far. It is called the earth mover’s
distance, or Wasserstein distance, and the idea behind it is clever. We will be nice for once
and not torture you with more math, but let’s talk about this idea. 

 You implicitly understand that there are two distributions that are both very high
dimensional: the real data-producing one (that we never fully see) and the samples
from the Generator (the fake one). Think about how vast the sample space for even a
32 × 32 RGB (x3 × 256 pixel values) image is. Now imagine all of this probability mass
for both of these distributions as being just two sets of hills. Chapter 10 revisits this in
more detail. For reference, we include figure 5.7, but it builds largely on the same
ideas as chapter 2.

 Imagine having to move all the ground that represents probability mass from the
fake distribution so that the distribution looks exactly like the real distribution, or at
least what we have seen of it. That would be like your neighbor having a super cool
sandcastle, and you having a lot of sand and trying to make the exact same sandcastle.
How much work would that take, to move all of that mass into just the right places?
Hey, it’s okay, we’ve all been there; sometimes you just wish your sandcastle was a bit
cooler and more sparkly.

 Using an approximate version of the Wasserstein distance, we can evaluate how
close we are to generating samples that look like they came from the real distribution.
Why approximate? Well, for one because we never see the real data distribution, so it’s
difficult to evaluate the exact earth mover’s distance.

15 A meta-review is just a review of reviews. It helps researchers pool findings from across several papers.
16 See “Many Paths to Equilibrium: GANs Do Not Need to Decrease a Divergence at Every Step,” by William

Fedus et al., 2018, https://openreview.net/forum?id=ByQpn1ZA-.

https://openreview.net/forum?id=ByQpn1ZA-
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(a)

(b)

Figure 5.7 Plot (a) should be familiar from chapter 2. For extra clarity, we provide another view of a 
Gaussian distribution in plot (b) of the data drawn from the same distribution, but showing vertical 
slices of just the first distribution on the top and just the second distribution on the right. Plot (a) then 
is a probability density abstraction of this data, where the z-axis represents the probability of that point 
being sampled. Now, even though one of these is just an abstraction of the other, how would you 
compare the two? How would you make sure that they are the same even when we told you? What if 
this distribution had 3,072 possible dimensions? In this example, we have just two! We are building up 
to how we’d compare two heaps-of-sand-looking distributions as in (b), but remember that as our 
distributions get more complicated, properly matching like for like also gets harder.



87Summary of game setups
In the end, all you need to know is that the earth mover’s distance has nicer proper-
ties than either the JS or KL, and there are already important contributions building
on the WGAN as well as validating its generally superior performance.17 Although in
some cases the WGAN does not completely outperform all the others, it is generally at
least as good in every case (though it should be noted that some may disagree with
this interpretation).18

 Overall, the WGAN (or the gradient penalty version, WGAN-GP) is widely used and
has become the de facto standard in much of GAN research and practice—though
the NS-GAN should not be forgotten anytime soon. When you see a new paper that
does not have the WGAN as one of the benchmarks being compared and does not
have a good justification for not including it—be careful!

5.3 Summary of game setups
We have presented the three core versions of the GAN setup: min-max, non-saturat-
ing, and Wasserstein. One of these versions will be mentioned at the beginning of
every paper, and now you’ll have at least an idea of whether the paper is using the
original formulation, which is more explainable but doesn’t work as well in practice;
or the non-saturating version, which loses a lot of the mathematical guarantees but
works much better; or the newer Wasserstein version, which has both theoretical
grounding and largely superior performance.

 As a handy guide, table 5.1 presents a list of the NS-GAN, WGAN, and even the
improved WGAN-GP formulations we use in this book. This is here so that you have
the relevant versions in one place—sorry, MM-GAN. We have included the WGAN-GP
here for completeness, because these three are the academic and industry go-tos.

17 See “Improved Training of Wasserstein GANs,” by Ishaan Gulrajani et al., 2017, http://arxiv.org/abs/
1704.00028.

18 See Lucic et al., 2017, http://arxiv.org/abs/ 1711.10337. 

Table 5.1 Summary of loss functionsa

Name Value function Notes

NS-GAN LD
NS = E[log(D(x))] + E[log(1 – D(G(z)))] 

LG
NS = E[log(D(G(z)))]

This is one of the original 
formulations. Typically not 
used in practice anymore, 
except as a foundational 
block or comparison. This is 
an equivalent formulation to 
the NS-GAN you have seen, 
just without the constants. 
But these are effectively 
equivalent.b

http://arxiv.org/abs/1711.10337
http://arxiv.org/abs/1704.00028
http://arxiv.org/abs/1704.00028
http://arxiv.org/abs/1704.00028
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5.4 Training hacks
We are now departing from the well-grounded academic results into the areas that
academics or practitioners just “figured out.” These are simply hacks, and often you
just have to try them to see if they work for you. The list in this section was inspired
by Soumith Chintala’s 2016 post, “How to Train a GAN: Tips and Tricks to Make
GANs Work” (https://github.com/soumith/ganhacks), but some things have changed
since then. 

 An example of what has changed is some of the architectural advice, such as the
Deep Convolutional GAN (DCGAN) being a baseline for everything. Currently, most
people start with the WGAN; in the future, the Self-Attention GAN (SAGAN is touched
on in chapter 12) may be a focus. In addition, some things are still true, and we regard
them as universally accepted, such as using the Adam optimizer instead of vanilla sto-
chastic gradient descent.19 We encourage you to check out the list, as its creation was a
formative moment in GAN history.

5.4.1 Normalizations of inputs

Normalizing the images to be between –1 and 1 is still typically a good idea according
to almost every machine learning resource, including Chintala’s list. We generally nor-
malize because of the easier tractability of computations, as is the case with the rest of

WGAN LD
WGAN = E[D(x)] – E[D(G(z))] 

LG
WGAN = E[D(G(z))]

This is the WGAN with 
somewhat simplified loss. 
This seems to be creating a 
new paradigm for GANs. We 
explained this equation pre-
viously as equation 5.5 in 
greater detail.

WGAN
-GPc (gradient 
penalties)

LD
W – GP = E[D(x)] – E[D(G(z))] + GPterm 

LG
W – GP = E[D(G(z))]

This is an example of a GAN 
with a gradient penalty (GP). 
WGAN-GP typically shows 
the best results.
We have not discussed the 
WGAN-GP in this chapter in 
great detail; we include it 
here for completeness. 

a. Source: “Collection of Generative Models in TensorFlow,” by Hwalsuk Lee, http://mng.bz/Xgv6.
b. We tend to use the constants in written code, and this cleaner mathematical formulation in papers.
c. This is a version of the WGAN with gradient penalty that is commonly used in new academic papers. See Gulrajani et al., 
2017, http://arxiv.org/abs/1704.00028.

19 Why is Adam better than vanilla stochastic gradient descent (SGD)? Because Adam is an extension of SGD
that tends to work better in practice. Adam groups several training hacks along with SGD into one easy-to-use
package.

Table 5.1 Summary of loss functionsa (continued)

Name Value function Notes

http://arxiv.org/abs/1704.00028
http://mng.bz/Xgv6
https://github.com/soumith/ganhacks
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machine learning. Given this restriction on the inputs, it is a good idea to restrict your
Generator’s final output with, for example, a tanh activation function.

5.4.2 Batch normalization

Batch normalization was discussed in detail in chapter 4. We include it here for com-
pleteness. As a note on how our perceptions of batch normalization have changed:
originally batch norm was generally regarded as an extremely successful technique,
but recently it has been shown to sometimes deliver bad results, especially in the Gener-
ator.20 In the Discriminator, on the other hand, results have been almost universally
positive.21

5.4.3 Gradient penalties 

This training trick builds on point 10 in Chintala’s list, which had the intuition that if
the norms of the gradients are too high, something is wrong. Even today, networks
such as BigGAN are innovating in this space, as we touch on in chapter 12.22 

 However, technical issues still remain: naive weighed clipping can produce vanish-
ing or exploding gradients known from much of the rest of deep learning.23 We can
restrict the gradient norm of the Discriminator output with respect to its input. In
other words, if you change your input a little bit, your updated weights should not
change too much. Deep learning is full of magic like this. This is especially important
in the WGAN setting, but can be applied elsewhere.24 Generally, this trick has in some
form been used by numerous papers.25

 Here, we can simply use the native implementation of your favorite deep learning
framework to penalize the gradient and not focus on the implementation detail
beyond what we described. Smarter methods have recently been published by top
researchers (including one good fellow) and presented at ICML 2018, but their wide-
spread academic acceptance has not been proven yet.26 A lot of work is being done to
make GANs more stable—such as Jacobian clamping, which is also yet to be repro-
duced in any meta-study—so we will need to wait and see which methods will make it.

20 See Gulrajani et al., 2017, http://arxiv.org/abs/ 1704.00028.
21 See “Tutorial on Generative Adversarial Networks—GANs in the Wild,” by Soumith Chintala, 2017, https://

www.youtube.com/watch?v=Qc1F3-Rblbw.
22 See “Large-Scale GAN Training for High-Fidelity Natural Image Synthesis,” by Andrew Brock et al., 2019,

https://arxiv.org/pdf/1809.11096.pdf.
23 See Gulrajani et al., 2017, http://arxiv.org/abs/ 1704.00028.
24 Though here the authors call the Discriminator critic, borrowing from reinforcement learning, as much of

that paper is inspired by it.
25 See “Least Squares Generative Adversarial Networks,” by Xudong Mao et al., 2016, http://arxiv.org/

abs/1611.04076. Also see “BEGAN: Boundary Equilibrium Generative Adversarial Networks,” by David
Berthelot et al., 2017, http://arxiv.org/abs/1703.10717.

26 See Odena et al., 2018, http://arxiv.org/abs/1802.08768.

http://arxiv.org/abs/1704.00028
https://www.youtube.com/watch?v=Qc1F3-Rblbw
https://www.youtube.com/watch?v=Qc1F3-Rblbw
https://www.youtube.com/watch?v=Qc1F3-Rblbw
https://arxiv.org/pdf/1809.11096.pdf
http://arxiv.org/abs/1704.00028
http://arxiv.org/abs/1611.04076
http://arxiv.org/abs/1611.04076
http://arxiv.org/abs/1611.04076
http://arxiv.org/abs/1703.10717
http://arxiv.org/abs/1802.08768
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5.4.4 Train the Discriminator more

Training the Discriminator more is an approach that has recently gained a lot of suc-
cess. In Chintala’s original list, this is labeled as being uncertain, so use it with caution.
There are two broad approaches:

 Pretraining the Discriminator before the Generator even gets the chance to
produce anything.

 Having more updates for the Discriminator per training cycle. A common ratio
is five Discriminator weight updates per one of the Generator’s.

In the words of deep learning researcher and teacher Jeremy Howard, this works
because it is “the blind leading the blind.” You need to initially and continuously
inject information about what the real-world data looks like.

5.4.5 Avoid sparse gradients

It intuitively makes sense that sparse gradients (such as the ones produced by ReLU or
MaxPool) would make training harder. This is because of the following:

 The intuition, especially behind average pooling, can be confusing, but think of
it this way: if we go with standard max pooling, we lose all but the maximum value
for the entire receptive field of a convolution, and that makes it much harder to
use the transposed convolutions—in DCGAN’s case—to recover the informa-
tion. With average pooling, we at least have a sense of what the average value is.
It is still not perfect—we are still losing information—but at least less than
before, because the average is more representative than the simple maximum.

 Another problem is information loss, if we are using, say, regular rectified linear
unit (ReLU) activation. A way to look at this problem is to consider how much
information is lost when applying this operation, because we might have to
recover it later. Recall that ReLU(x) is simply max(0,x), which means that for all
the negative values, all this information is lost forever. If instead we ensure that
we carry over the information from the negative regions and signify that this
information is different, we can preserve all this information.

As we suggested, fortunately, a simple solution exists for both of these: we can use
Leaky ReLU—which is something like 0.1 × x for negative x, and 1 × x for x that’s at
least 0—and average pooling to get around a lot of these problems. Other activation
functions exist (such as sigmoid, ELU, and tanh), but people tend to use Leaky ReLU
most commonly.

NOTE The Leaky ReLU can be any real number, typically, 0 < x < 1.

Overall, we are trying to minimize information loss and make the flow of information
the most logical it can be, without asking the GAN to backpropagate the error in some
strange way, where it also has to learn the mapping.
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5.4.6 Soft and noisy labels

Researchers use several approaches to either add noise to labels or smooth them. Ian
Goodfellow tends to recommend one-sided label smoothing (for example, using 0
and 0.9 as binary labels), but generally playing around with either adding noise or
clipping seems to be a good idea.

Summary
 You have learned why evaluation is such a difficult topic for generative models

and how we can train a GAN well with clear criteria indicating when to stop.
 Various evaluation techniques move beyond the naive statistical evaluation of

distributions and provide us with something more useful that correlates with
visual sample quality.

 Training is performed in three setups: the game-theoretical Min-Max GAN, the
heuristically motivated Non-Saturating GAN, and the newest and theoretically
well-founded Wasserstein-GAN.

 Training hacks that allow us to train faster include the following:
– Normalizing inputs, which is standard in machine learning
– Using gradient penalties that give us more stability in training
– Helping to warm-start the Discriminator to ultimately give us a good Genera-

tor, because doing so sets a higher bar for the generated samples
– Avoiding sparse gradients, because they lose too much information
– Playing around with soft and noisy labels rather than the typical binary classi-

fication



Progressing with GANs
In this chapter, we provide a hands-on tutorial to build a Progressive GAN by using
TensorFlow and the newly released TensorFlow Hub (TFHub). The Progressive GAN
(aka PGGAN, or ProGAN) is a cutting-edge technique that has managed to generate
full-HD photorealistic images. Presented at one of the top machine learning con-
ferences, the International Conference on Learning Representations (ICLR) in
2018, this technique made such a splash that Google immediately integrated it as
one of the few models to be part of the TensorFlow Hub. In fact, this technique was
lauded by Yoshua Bengio—one of the grandfathers of deep learning—as “almost
too good to be true.” When it was released, it became an instant favorite of aca-
demic presentations and experimental projects.

 We recommend that you go through this chapter with TensorFlow 1.7 or higher,
but 1.8+ was the latest release at the time of writing, so that was the one we used.

This chapter covers
 Progressively growing Discriminator and 

Generator networks throughout training

 Making training more stable, and the output more 
varied and of higher quality and resolution 

 Using TFHub, a new central repository for models 
and TensorFlow code
92
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For TensorFlow Hub, we suggest using a version no later than 0.4.0, because later ver-
sions have trouble importing due to compatibility issues with TensorFlow 1.x. After
reading this chapter, you’ll be able to implement all the key improvements of the Pro-
gressive GAN. These four innovations are as follows: 

 Progressively growing and smoothly fading in higher-resolution layers 
 Mini-batch standard deviation 
 Equalized learning rate 
 Pixel-wise feature normalization 

This chapter features two main examples: 

 Code for the crucial innovations of Progressive GANs—more specifically, the
smoothly fading-in higher-resolution layers and the other three innovations as
listed previously. The rest of the implementation of the Progressive GAN tech-
nique is too substantial to be included in this book. 

 A pretrained, easily downloadable implementation as provided by Google on
TFHub, which is a new centralized repository for machine learning models,
similar to Docker Hub or Conda and PyPI repositories in the software package
world. This implementation will allow us to do latent space interpolation to
control the features of the generated examples. It will briefly touch on the seed-
ing vectors in the latent space of the Generator so that we can get pictures that
we want. You saw this idea in chapters 2 and 4.

The reasons we decided to implement the PGGAN using TFHub rather than from the
ground up as we do in all the other chapters are threefold:

 Especially for practitioners, we want to make sure you are—at least in one chap-
ter—exposed to the software engineering best practices that may speed up your
workflow. Want to try a quick GAN on your problem? Just use one of the imple-
mentations on TFHub. There are now many more than when we were first writ-
ing this chapter, including many reference implementations (for example, for
BigGAN in chapter 12 and NS-GAN in chapter 5). We want to give you access to
easy-to-use, state-of-the-art examples, because this is the way that machine learn-
ing is going—automating as much of machine learning as possible so we can
focus on what matters the most: delivering impact. Google’s Cloud AutoML
(https://cloud.google.com/automl/) and Amazon SageMaker (https://aws
.amazon.com/sagemaker/) are prime examples of this trend. Even Facebook
recently introduced PyTorch Hub, so both major frameworks now have one.

 The original implementation of PGGAN took the NVIDIA researchers one to two
months to run, which we thought was impractical for any person to run on their
own, especially if you want to experiment or get something wrong.1 TFHub still

1 See “Progressive Growing of GANs for Improved Quality, Stability, and Variation,” by Tero Karras, 2018,
https://github.com/tkarras/progressive_growing_of_gans.

https://cloud.google.com/automl/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://github.com/tkarras/progressive_growing_of_gans
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gives you a fully trainable PGGAN, so if you want to repurpose the days of com-
putation for something else, you can!

 We still want to show you PGGANs’ most important innovations. But if we want
to explain those well—including code—we can’t fit all the implementation
details into one chapter, even in Keras, as all the implementations tend to be
pretty sizeable. TFHub allows us to skip over the boilerplate code and focus on
the ideas that matter.

6.1 Latent space interpolation
Recall from chapter 2 that we have this lower-resolution space—called latent space—
that seeds our output. As with the DCGAN from chapter 4 and indeed the Progressive
GAN, the initial trained latent space has semantically meaningful properties. It means
that we can find the vector offsets that, for example, introduce eyeglasses to an image
of a face, and the same offset will introduce glasses in new images. We can also pick
two random vectors and then move in equal increments between them and so gradu-
ally—smoothly—get an image that matches the second vector. 

 This is called interpolation, and you can see this process in figure 6.1. As the author
of BigGAN said, meaningful transitions from one vector to another show that the
GAN has learned some underlying structure.

6.2 They grow up so fast
In previous chapters, you learned which results are easy to achieve with GANs and
which are difficult. Moreover, things like mode collapse (showing only a few examples of

Figure 6.1 We can perform latent space interpolation because the latent vector we send to the 
Generator produces consistent outcomes that are predictable in some ways; not only is the generative 
process predictable, but also the output is not jagged—or reacting sharply to small changes—
considering the latent vector changes. If we, for example, want an image that is a blend of two faces, 
we just need to search somewhere around the average of the two vectors.
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the overall distribution) and lack of convergence (one of the causes of poor quality of the
results) are no longer alien terms to us. 

 Recently, a Finnish NVIDIA team released a paper that has managed to blow many
previous cutting-edge papers out of the water: “Progressive Growing of GANs for
Improved Quality, Stability, and Variation,” by Tero Karras et al. This paper features
four fundamental innovations, so let’s walk through them in order.

6.2.1 Progressive growing and smoothing of higher-resolution layers

Before we dive into what the Progressive GAN does, let’s start with a simple analogy.
Imagine looking at a mountain region from a bird’s-eye view: you have lots of valleys,
which have nice creeks and villages—generally quite habitable. Then you have many
mountain tops that are rough and generally unpleasant to live on because of weather
conditions. This sort of represents the loss function landscape, where we want to min-
imize the loss by going down the mountain slopes and into the valleys, which are
much nicer. 

 We can imagine training as dropping a mountaineer into a random place in this
mountain region and then following their path down the slope into a valley. This is
what stochastic gradient descent does, and chapter 10 revisits this in a lot more detail.
Now, unfortunately, if we start with a very complex mountain range, the mountain-
eer will not know which direction to travel. The space around our adventurer would
be jagged and rough. It would be difficult to make out where the nicest, lowest val-
ley is with lots of habitable lands. Instead, we zoom out and reduce the complexity
of the mountain range to give the mountaineer a high-level picture of this particu-
lar area. 

 As our mountaineer gets closer to a valley, we can start increasing the complexity
by zooming in on the terrain. Then we no longer see just the coarse/pixelated tex-
ture, but instead get to see the finer details. This approach has the advantage that as
our mountaineer goes down the slope, they can easily make little optimizations to
make the hiking easier. For example, they can take a path through a dried-up creek to
make the descent into the valley even faster. That is progressive growing: increasing the
resolution of the terrain as we go.

 However, if you have ever seen an open world computer game or scrolled too
quickly through Google Earth with 3D on, you know that quickly increasing the reso-
lution of the terrain around you can be startling and unpleasant. Objects all of a sud-
den jump into existence. So instead, we progressively smooth in and slowly introduce
more complexity as the mountaineer gets closer to the objective. 

 In technical terms, we are going from a few low-resolution convolutional layers to
many high-resolution ones as we train. Thus, we first train the early layers and only
then introduce a higher-resolution layer, where it is harder to navigate the loss space.
We go from something simple—for example, 4 × 4 trained for several steps—to some-
thing more complex—for example, 1024 × 1024 trained for several epochs, as shown
in figure 6.2.
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The problem in this scenario is that upon introducing even one more layer at a time
(for example, from 4 × 4 to 8 × 8), we are still introducing a massive shock to the train-
ing. What the PGGAN authors do instead is smoothly fade in those layers, as in fig-
ure 6.3, in order to give the system time to adapt to the higher resolution.

 However, rather than immediately jumping to this resolution, we smoothly fade in
this new layer with higher resolution by a parameter alpha (), which is between 0
and 1. Alpha affects how much we use either the old—but upscaled—layer or the
natively larger one. On the side of the D, we simply shrink by 0.5x to allow for
smoothly injecting the trained layer for discrimination. This is (b) in figure 6.3. When
we are confident about this new layer, we keep the 32 × 32—(c) in the figure—and
then we are getting ready to grow yet again after we have trained 32 × 32 properly. 
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Figure 6.2 Can you see how we start with a smooth mountain range and gradually increase the complexity by 
zooming in? That is effectively what adding extra layers does to the loss function. This is handy, as our mountain 
region (loss function) is much easier to navigate when it is less jagged. You can think of it as follows: when we 
have a more complex structure (b), the loss function is jagged and hard to navigate (d), because there are so 
many parameters—especially in early layers—that can have a massive impact and generally increase the 
dimensionality of the problem. However, if we initially remove some part of the complexity (a), we can early on 
get a loss function that is much easier to navigate (c) and increases in complexity only as we gain confidence 
that we are at the approximately right part of the loss space. Only then do we move from (a) and (c) into (b) 
and (d) versions.
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6.2.2 Example implementation

For all the innovations we’ve detailed, in this section we’ll give you working but iso-
lated versions so that we can talk code. As an exercise, you may want to try implement-
ing these things as one GAN network, maybe using the existing prior architectures. If
you are ready, let’s load up ye olde, trusty machine learning libraries and get cracking:

import tensorflow as tf
import keras as K

In the code, progressive smoothing in may look something like the following listing.
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Figure 6.3 When we’ve trained for enough steps with, say, 16 × 16 resolution 
(a), we introduce another transposed convolution in the Generator (G) and another 
convolution in the Discriminator (D) to get the “interface” between G and D to be 
32 × 32. But we also introduce two pathways: (1 – ) simple nearest neighbor 
upscaling, which does not have any trained parameters, but is also quite naive; 
and () extra transposed convolution, which requires training but will ultimately 
perform much better. 
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def upscale_layer(layer, upscale_factor):
    '''
    Upscales layer (tensor) by the factor (int) where
    the tensor is [group, height, width, channels]
    '''
    height = layer.get_shape()[1]
    width = layer.get_shape()[2]
    size = (upscale_factor * height, upscale_factor * width)
    upscaled_layer = tf.image.resize_nearest_neighbor(layer, size)
    return upscaled_layer

def smoothly_merge_last_layer(list_of_layers, alpha):
    '''
    Smoothly merges in a layer based on a threshold value alpha.
    This function assumes: that all layers are already in RGB. 
    This is the function for the Generator.
    :list_of_layers    :   items should be tensors ordered by resolution
    :alpha             :    float \in (0,1)
    '''
    last_fully_trained_layer = list_of_layers[-2]                    
    last_layer_upscaled = upscale_layer(last_fully_trained_layer, 2)   

    larger_native_layer = list_of_layers[-1]         

    assert larger_native_layer.get_shape() == last_layer_upscaled.get_shape()

    new_layer = (1-alpha) * upscaled_layer + larger_native_layer * alpha   

    return new_layer

Now that you have an understanding of the lower-level details of progressive growing
and smoothing without unnecessary complexity, hopefully you can appreciate how
general this idea is. Although Karras et al., were by no means the first to come up with
some way of increasing model complexity during training, this seems like by far the
most promising avenue and indeed the innovation that resonated the most. As of June
2019, this paper was cited over 730 times. With that context in mind, let’s move on to
the second big innovation.

6.2.3 Mini-batch standard deviation

The next innovation introduced by Karras et al. in their paper is mini-batch standard
deviation. Before we dive into it, let’s recall from chapter 5 the issue of mode collapse,
which occurs when the GAN learns how to create a few good examples or only slight
permutations on them. We generally want to produce the faces of all the people in the
real dataset, maybe not just one picture of one woman.

 Therefore, Karras et al. created a way for the Discriminator to tell whether the sam-
ples it is getting are varied enough. In essence, we calculate a single extra scalar statis-
tic for the Discriminator. This statistic is the standard deviation of all the pixels in the

Listing 6.1 Progressive growing and smooth upscaling

Hint! If you
 using pure
ensorFlow
ather than
ras, always
remember

scope.

 we have
 originally
ned layer.

The newly added layer 
not yet fully trained

his makes
re we can

run the
merging

code. This code block should take
advantage of broadcasting.
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mini-batch that are generated by the Generator or that come from the real data. That
is an amazingly simple and elegant solution: now all the Discriminator needs to learn
is that if the standard deviation is low in the images from the batch it is evaluating, the
image is likely fake, because the real data has more variance.2 The Generator has no
choice but to increase the variance of the generated samples to have a chance to fool
the Discriminator.

 Moving beyond the intuition, the technical implementation is straightforward as it
applies only to the Discriminator. Given that we also want to minimize the number of
trainable parameters, we include only a single extra number, which seems to be
enough. This number is appended as a feature map—think dimension or the last num-
ber in the tf.shape list. 

 The exact procedure is as follows and is depicted in listing 6.2:

1 [4D -> 3D] We compute the standard deviation across all the images in the
batch, across all the remaining channels—height, width, and color. We then get
a single image with standard deviations for each pixel and each channel. 

2 [3D -> 2D] We average the standard deviations across all channels—to get a sin-
gle feature map or matrix of standard deviations for that pixel, but with a col-
lapsed color channel. 

3 [2D -> Scalar/0D] We average the standard deviations for all pixels within the
preceding matrix to get a single scalar value. 

def minibatch_std_layer(layer, group_size=4):
    '''
    Will calculate minibatch standard deviation for a layer.
    Will do so under a prespecified tf-scope with Keras.
    Assumes layer is a float32 data type. Else needs validation/casting.
    NOTE: there is a more efficient way to do this in Keras, but just for
    clarity and alignment with major implementations (for understanding) 
    this was done more explicitly. Try this as an exercise.
    '''
    group_size = K.backend.minimum(group_size, tf.shape(layer)[0]) 

    shape = list(K.int_shape(input))    
    shape[0] = tf.shape(input)[0]

2 Some may object that this can also happen when the sampled real data includes a lot of very similar pictures.
Though this is technically true, in practice this is easy to fix, and remember that the similarity would have to
be so high that a single pass of a simple nearest neighbor clustering would reveal it.

Listing 6.2 Mini-batch standard deviation

Hint! If you are using pure TensorFlow
rather than Keras, always remember

scope. A mini-batch group must be
divisible by (or <=) group_size.

Just getting some shape information so 
that we can use it as shorthand as well as 
ensure defaults. We get the input from 
tf. shape, as the “pre-image” dimensions 
are typically cast as None before graph 
execution. 
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    minibatch = K.backend.reshape(layer, 
        (group_size, -1, shape[1], shape[2], shape[3]))     
    minibatch -= tf.reduce_mean(minibatch, axis=0, keepdims=True)  
    minibatch = tf.reduce_mean(K.backend.square(minibatch), axis = 0)
    minibatch = K.backend.square(minibatch + 1e8)  
    minibatch = tf.reduce_mean(minibatch, axis=[1,2,4], keepdims=True)
    minibatch = K.backend.tile(minibatch, 
        [group_size, 1, shape[2], shape[3]])
return K.backend.concatenate([layer, minibatch], axis=1)

6.2.4 Equalized learning rate

Equalized learning rate is one of those deep learning dark art techniques that is proba-
bly not clear to anyone. Although the researchers do provide a short explanation in
the PGGAN paper, they avoided the topic in oral presentations, suggesting that this is
probably just a hack that seems to work. Frequently in deep learning this is the case. 

 Furthermore, many nuances about equalized learning rate require a solid under-
standing of the implementation of RMSProp or Adam—which is the used optimizer—
and also of weights initialization. So don’t worry if this does not make sense to you,
because it probably does not really make sense to anyone. 

 But if you’re curious, the explanation goes something as follows: we need to
ensure that all the weights (w) are normalized (w') to be within a certain range such
that w' = w/c by a constant c that is different for each layer, depending on the shape
of the weight matrix. This also ensures that if any parameters need to take bigger
steps to reach optimum—because they tend to vary more—these relevant parame-
ters can do that. 

 Karras et al. use a simple standard normal initialization and then scale the weights
per layer at runtime. Some of you may be thinking that Adam already does that—yes,
Adam allows learning rates to be different for different parameters, but there’s a
catch. Adam adjusts the backpropagated gradient by the estimated standard deviation
of the parameter, which ensures that the scale of that parameter is independent of the
update. Adam has different learning rates in different directions, but does not always
take into account the dynamic range—how much a dimension or feature tends to vary
over given mini-batches. As some point out, this seems to solve a similar problem as
weights initialization.3 

3 See “Progressive Growing of GANs.md,” by Alexander Jung, 2017, http://mng.bz/5A4B.

Reshaping so that we operate on the level of the mini-batch.
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 However, if this is not clear, do not worry; we highly recommend two excellent
resources: Andrew Karpathy’s 2016 computer science lecture for notes about weights
initialization,4 and a Distill article for details on how Adam works.5 The following list-
ing shows the equalized learning rate.

def equalize_learning_rate(shape, gain, fan_in=None):
    '''
    This adjusts the weights of every layer by the constant from 
    He's initializer so that we adjust for the variance in the dynamic 
    range in different features
    shape   :  shape of tensor (layer): these are the dimensions 
        of each layer.
    For example, [4,4,48,3]. In this case, [kernel_size, kernel_size,
        number_of_filters, feature_maps]. But this will depend 
        slightly on your implementation.
    gain    :  typically sqrt(2)
    fan_in  :  adjustment for the number of incoming connections 
        as per Xavier's / He's initialization 
    '''
    if fan_in is None: fan_in = np.prod(shape[:-1])  
    std = gain / K.sqrt(fan_in)                             
    wscale = K.constant(std, name='wscale', dtype=np.float32)   
    adjusted_weights = K.get_value('layer', shape=shape,      
        initializer=tf.initializers.random_normal()) * wscale
    return adjusted_weights6

If you are still confused, rest assured that these initialization tricks and these compli-
cated learning rate adjustments are rarely a point of differentiation in either aca-
demia or industry. Also, just because restricting weight values between –1 and 1 seems
to work somewhat better in most reruns here, that does not mean this trick will gener-
alize to other setups. So let’s move to better-proven techniques.

6.2.5 Pixel-wise feature normalization in the generator

Let’s begin with some motivation for why would we even want to normalize the fea-
tures—stability of training. Empirically, the authors from NVIDIA have discovered
that one of the early signs of divergent training was an explosion in feature magni-
tudes. A similar observation was made by the BigGAN authors in chapter 12. So Karras
et al. introduced a technique to combat this. On a broader note, this is frequently how
GAN training is done: we observe a particular problem with the training, so we intro-
duce mechanisms to prevent that problem from happening. 

4 See “Lecture 5: Training Neural Networks, Part I,” by Fei-Fei Li et al. 2016, http://mng.bz/6wOo. 
5 See “Why Momentum Really Works,” by Gabriel Goh, 2017, Distill, https://distill.pub/2017/momentum/.

Listing 6.3 Equalized learning rate

6 See “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,” by
Kaiming He et al., https://arxiv.org/pdf/1502.01852.pdf.
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 Note that most networks are using some form of normalization. Typically, they use
either batch normalization or a virtual version of this technique. Table 6.1 presents an
overview of normalization techniques used in the GANs presented in this book so far.
You saw these in chapter 4 (DCGAN) and chapter 5—where we touched on the rest of
the GANs and gradient penalties (GPs). Unfortunately, in order for batch normaliza-
tion and its virtual equivalent to work, we must have large mini-batches so that the
individual samples average themselves out.

Based on the fact that all these major implementations use normalization, it is clearly
important, but why not just used standard batch normalization? Unfortunately, batch
normalization is too memory intensive at our resolution. We have to come up with
something that allows us to work with a few examples—that fit into our GPU memory
with the two network graphs—but still works well. Now we understand where the need
for pixel-wise feature normalization comes from and why we use it.

 If we jump into the algorithm, pixel normalization takes activation magnitude at
each layer just before the input is fed into the next layer. 

Table 6.1 Use of normalization techniques in GANs

Method Authors G normalization D normalization

DCGAN (Radford et al., 2015, 
https://arxiv.org/abs/1511.06434)

Batch Batch

Improved GAN (Salimans et al., 2016, 
https://arxiv.org/pdf/1606.03498.pdf)

Virtual batch Virtual batch

WGAN (Arjovsky et al., 2017, 
https://arxiv.org/pdf/1701.07875.pdf)

— Batch

WGAN-GP (Gulrajani et al., 2017, 
http://arxiv.org/abs/1704.00028)

Batch Layer norm

Pixel-wise feature normalization
For each feature map do

1 Take the pixel value of that feature map (fm) at a position (x, y).
2 Construct a vector for each (x, y), where

a v0,0 = [ (0,0) value for fm1, (0,0) value for fm2, …, (0,0) value for fmn ] 
b v0,1 = [ (0,1) value for fm1, (0,1) value for fm2, …, (0,1) value for fmn ]

…
c vn,n = [ (n,n) value for fm1, (n,n) value for fm2, …, (n,n) value for fmn ]

3 Normalize each vector vi,i as defined in step 2 to have a unit norm; call it ni,i.
4 Pass that in the original tensor shape to the next layer.

End for

https://arxiv.org/abs/1511.06434
https://arxiv.org/pdf/1606.03498.pdf
https://arxiv.org/pdf/1701.07875.pdf
http://arxiv.org/abs/1704.00028
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Figure 6.4 illustrates the process of pixel-wise feature normalization. The exact descrip-
tion of step 3 is shown in equation 6.1.

          Equation 6.1

This formula normalizes (divides by the expression under the square root) each vector
constructed in step 2 of figure 6.4. This expression is just an average of each squared
value for that particular (x, y) pixel. One thing that may surprise you is the addition of
a small noise term (). This is simply a way to ensure that we are not dividing by zero.
The whole procedure is explained in greater detail in the 2012 paper “ImageNet Clas-
sification with Deep Convolutional Neural Networks,” by Alex Krizhevsky et al. (http://
mng.bz/om4d).

 The last thing to note is that this term is applied only to the Generator, as the
explosion in the activation magnitudes leads to an arms race only if both networks par-
ticipate. The following listing shows the code.
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Figure 6.4 We map out all the points in an image (step 1) to a set of vectors (step 2), and then we normalize 
them so that they are all in the same range (typically between 0 and 1 in the high-dimensional space), which is 
step 3.
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def pixelwise_feat_norm(inputs, **kwargs):
    '''
    Uses pixelwise feature normalization as proposed by
    Krizhevsky et at. 2012. Returns the input normalized
    :inputs     :    Keras / TF Layers 
    '''
    normalization_constant = K.backend.sqrt(K.backend.mean(
        inputs**2, axis=-1, keepdims=True) + 1.0e-8)
    return inputs / normalization_constant

6.3 Summary of key innovations
We have gone through four clever ideas on how to improve GAN training; however,
without grounding them in their effects on the training, it may be difficult to isolate
those effects. Thankfully, the paper’s authors provide a helpful table to help us under-
stand just that; see figure 6.5.

The PGGAN paper’s authors are using sliced Wasserstein distance (SWD), where smaller
is better. Recall from chapter 5 that a smaller Wasserstein—aka earth mover’s—distance
means better results as quantified by the amount of probability mass one has to move
to make the two distributions similar. The SWD means that patches of both the real
data and the generated samples minimize this distance. The nuances of this tech-
nique are explained in the paper, but as the authors said during their presentation at
ICLR, better measures—such as the Fréchet inception distance (FID)—now exist. We
covered the FID in greater depth in chapter 5.

 One key takeaway from this table is that a mini-batch does not work well, because, at a
megapixel resolution, we do not have enough virtual RAM to load many images into

Listing 6.4 Pixel-wise feature normalization

C -AELEB LSUN BEDROOM

Sliced Wasserstein distance 10� 3

128 64 32 16 Avg

12.99 7.79 7.62 8.73 9.28 0.2854

4.62 2.64 3.78 6.06 4.28 0.2838

75.42 41.33 41.62 26.57 46.23 0.4065

9.20 6.53 4.71 11.84 8.07 0.3027

10.76 6.28 6.04 16.29 9.84 0.3057

13.94 5.67 2.82 5.71 7.04 0.2950

4.42 3.28 2.32 7.52 4.39 0.2902

4.06 3.04 2.02 5.13 3.56 0.2845

2.95 2.38 1.98 5.16 3.12 0.2880

Training configuration

(a) Gulrajani et al. (2017)

(b) + Progressive growing

(c) + Small minibatch

(d) + Revised training parameters

(e*) + Minibatch discrimination

(e) Minibatch stddev

(f) + Equalized learning rate

(g) + Pixelwise normalization

(h) Converged

Sliced Wasserstein distance 10� 3

128 64 32 16 Avg

11.97 10.51 8.03 14.48 11.25 0.0587

7.09 6.27 7.40 9.64 7.60 0.0615

72.73 40.16 42.75 42.46 49.52 0.1061

7.39 5.51 3.65 9.63 6.54 0.0662

10.29 6.22 5.32 11.88 8.43 0.0648

7.77 5.23 3.27 9.64 6.48 0.0671

3.61 3.32 2.71 6.44 4.02 0.0668

3.89 3.05 3.24 5.87 4.01 0.0640

3.26 3.06 2.82 4.14 3.32 0.0633

MS-SSIM MS-SSIM

Figure 6.5 Contributions of various techniques to score improvements. We can see that the introduction of 
equalized learning rate makes a big difference, and pixel-wise normalization adds to that, though what the authors 
do not tell us is how effective this technique would be if we had only pixel normalization and did not introduce 
equalized learning rate. We include this table only as an illustration of the rough magnitude of improvement we 
can expect from these changes—which is an interesting lesson on its own—but more detailed discussion follows.
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the GPU memory. We have to use a smaller mini-batch—which may, overall, perform
worse—and we have to reduce the mini-batch sizes further, making our training difficult. 

6.4 TensorFlow Hub and hands-on
Google has recently announced that as part of TensorFlow Extended and the general
move toward implementing best practices from software engineering into the machine
learning world, Google has created a central model and code repository called Tensor-
Flow Hub, or TFHub. Working with TFHub is almost embarrassingly easy, especially
with the models that Google has put there. 

 After importing the hub module and calling the right URL, TensorFlow downloads
and imports the model all by itself, and you can start. These models are well-documented
at the same URL that we use to download the model; just put them into your web
browser. In fact, to get a pretrained Progressive GAN, all you need to type is an import
statement and one line of code. That’s it! 

 The following listing shows a complete example of code that should by itself gener-
ate a face—based on the random seed that you specify in latent_vector.7 Figure 6.6
displays the output.

import matplotlib.pyplot as plt
import tensorflow as tf
import tensorflow_hub as hub

with tf.Graph().as_default():
    module = hub.Module("https://tfhub.dev/google/progan-128/1")  
    latent_dim = 512                                             

    latent_vector = tf.random_normal([1, latent_dim], seed=1337) 

    interpolated_images = module(latent_vector)        

    with tf.Session() as session:                  
    session.run(tf.global_variables_initializer())
    image_out = session.run(interpolated_images)

plt.imshow(image_out.reshape(128,128,3))
plt.show()

Hopefully, this should be enough to get you started with Progressive GANs! Feel free to
play around with the code and extend it. It should be noted here that the TFHub ver-
sion of the Progressive GAN is not using the full 1024 × 1024, but rather just 128 × 128.
This is probably because running the full version used to be computationally expensive,
and the model size can grow huge quickly in the domain of computer vision problems. 

7 This example was generated with the use of TFHub and is based on the example Colab provided at
http://mng.bz/nvEa.

Listing 6.5 Getting started with TFHub

Imports the
Progressive GAN

from TFHub

Latent 
dimension
that gets 
sampled a
runtime anges the

eed to get
different

faces
Uses the module to generate 
images from the latent space. 
Implementation details are 
online.

Runs the TensorFlow session 
and gets back the image in 
shape (1,128,128,3)

https://shortener.manning.com/nvEa
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6.5 Practical applications
Understandably, people are curious about the practical applications and ability to
generalize Progressive GANs. One great example we’ll present is from our colleagues
at Kheiron Medical Technologies, based in London, England. Recently, they released
a paper that is a great testament to both the generalizability and practical applications
of the PGGAN.8 

 Using a large dataset of medical mammograms,9 these researchers managed to
generate realistic 1280 × 1024 synthetic images of full-field digital mammography
(FFDM), as shown in figure 6.7. This is a remarkable achievement on two levels:

 It shows the generalizability of this technique. Think about how different
images of mammograms are from the images of human faces—especially struc-
turally. The bar for whether a tissue structure makes sense is incredibly high,
and yet their network manages to produce samples at the highest resolution to
date that frequently fool medical professionals.

 It shows how these techniques can be applied to many fields and uses. For
example, we can use this new dataset in a semi-supervised way, as you will dis-
cover in the next chapter. Or the synthetic dataset can be open sourced for
medical research with arguably fewer worries from General Data Protection
Regulation (GDPR) or other legal repercussions, as these do not belong to any
one person.

8 See “High-Resolution Mammogram Synthesis Using Progressive Generative Adversarial Networks,” by Dimi-
trios Korkinof et al., 2018, https://arxiv.org/pdf/1807.03401.pdf.

9  X-ray scans for the purposes of breast cancer screening. 

Figure 6.6 Output of listing 6.5. Try changing the 
seed in the latent_vector definition to get 
different outputs. A word of warning: even though 
this random seed argument should consistently 
define the output we are meant to get, we have 
found that on reruns we sometimes get different 
results, depending on the version of TensorFlow. 
This image is obtained using 1.9.0-rc1.

https://arxiv.org/pdf/1807.03401.pdf
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Figure 6.8 shows how realistic these mammograms can look. These have been randomly
sampled (so no cherry-picking) and then compared to one of the closest images in
the dataset.

 GANs may be used for many applications, not just fighting breast cancer or gener-
ating human faces, but also in 62 other medical GAN applications published through
the end of July 2018.10 We encourage you to look at them—but of course, not all of
them use PGGANs. Generally, GANs are allowing massive leaps in many research
fields, but are frequently applied nonintuitively. We hope to make these more accessi-
ble so that they can be used by more researchers. Make GANs, not war!

10 See “GANs for Medical Image Analysis,” by Salome Kazeminia et al., 2018, https://arxiv.org/pdf/1809
.06222.pdf.

(a) Discriminator binary

cross entropy.

–80.0

0.000 4.000k 8.000k 12.00k

–60.0

–40.0

–20.0

0.00

20.0

40.0

0.00

0.500

1.00

1.50

2.00

2.50

0.000 4.000k 8.000k 12.00k

0.00

0.200

0.400

0.600

0.800

1.00

0.000 4.000k 8.000k 12.00k

0.00

0.400

0.800

1.20

1.60

2.00

0.000 4.000k 8.000k 12.00k

(b) Gradient magnitudes

contributing in Eq. (5).

(c) Label cross entropy for

original images.

(e) The training progression of a successful run.

(d) Label cross entropy for

generated images.

Figure 6.7 Progressive growing of FFDM. This is a great figure because it not only shows the progressively 
increasing resolution on these mammograms (e), but also some training statistics (a)–(d) to show you that 
training these GANs is messy for everyone, not just you.

https://arxiv.org/pdf/1809.06222.pdf
https://arxiv.org/pdf/1809.06222.pdf
https://arxiv.org/pdf/1809.06222.pdf
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All of the techniques we presented in this chapter represent a general class of solving
GAN problems—with a progressively more complex model. We expect this paradigm to
pick up within GANs. The same is true for TensorFlow Hub: it is to TensorFlow what
PyPI/Conda is to Python. Most Python programmers use them every week!11

 We hope that this new Progressive GAN technique opened your eyes to what GANs
can do and why people are so excited about this paper. And hopefully not just for the
cat meme vector that PGGAN can produce.12 The next chapter will give you the tools
so that you can start contributing to research yourself. See you then!

Summary
 We can achieve 1-megapixel synthetic images thanks to the state-of-the-art

PGGAN technique.
 This technique has four key training innovations:

– Progressive growing and smoothing in higher-resolution layers
– Mini-batch standard deviation to enforce variation in the generated samples

11 See “MammoGAN: High-Resolution Synthesis of Realistic Mammograms,” by Dimitrios Korkinof et al., 2019,
https://openreview.net/pdf?id=SJeichaN5E.

12 See Gene Kogan’s Twitter image, 2018, https://twitter.com/genekogan/status/1019943905318572033.

(a) Randomly sampled examples of real and generated CC views.

Original

Generated

Figure 6.8 In comparing the real and the generated datasets, the data looks pretty realistic and generally 
close to an example in the training set. In their subsequent work, MammoGAN, Kheiron has shown that these 
images fool trained and certified radiologists.11 That’s generally a good sign, especially at this high resolution. 
Of course, in principle, we would love to have a statistical way of measuring the quality of the generation. But 
as we know from chapter 5, this is hard enough to do with standard images, let alone for any arbitrary GAN.

https://openreview.net/pdf?id=SJeichaN5E
https://twitter.com/genekogan/status/1019943905318572033
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– Equalized learning rate that ensures we can take learning steps of appropri-
ate sizes in each direction

– Pixel-wise vector normalization that ensures that the Generator and the Dis-
criminator do not spiral out of control in an arms race

 You followed a hands-on tutorial using the newly released TensorFlow Hub and
got to use their downsampled version of the Progressive GAN to generate
images!

 You learned about how GANs are helping to fight cancer. 



Semi-Supervised GAN
Congratulations—you have made it more than halfway through this book. By
now, you not only have learned what GANs are and how they function, but also
had an opportunity to implement two of the most canonical implementations:
the original GAN that started it all and the DCGAN that laid the foundation for
the bulk of the advanced GAN variants, including the Progressive GAN intro-
duced in the previous chapter.

 However, as with many fields, just when you think you are beginning to get a
real hang of it, you uncover that the domain is much larger and more complex
than initially thought. What might have seemed like a thorough understanding
turns out to be no more than the tip of the iceberg.

 GANs are no exception. Since their invention, they have remained an active
area of research with countless variations added every year. An unofficial list—aptly

This chapter covers
 The booming field of innovations based on the 

original GAN model

 Semi-supervised learning and its immense 
practical importance

 Semi-Supervised GANs (SGANs)

 Implementation of an SGAN model
110
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named “The GAN Zoo” (https://github.com/hindupuravinash/the-gan-zoo)—which
seeks to track all named GAN variants (GAN implementations with distinct names
coined by the researchers who authored them) has grown to well over 300 at the time
of this writing. However, judging from the fact that the original GAN paper has been
cited more than 9,000 times to date (July 2019) and ranks among the most cited
research papers in recent years in all of deep learning, the true number of GAN varia-
tions invented by the research community is likely even higher.1 See figure 7.1.

This, however, is no reason to despair. Although it is impossible to cover all these GAN
variants in this book, or any book for that matter, we can cover a few of the key innova-
tions that will give you a good idea of what’s out there as well as the unique contribu-
tions each of these variations provides to the field of generative adversarial learning. 

1 According to a tracker from the Microsoft Academic (MA) search engine: http://mng.bz/qXXJ. See also “Top
20 Research Papers on Machine Learning and Deep Learning,” by Thuy T. Pham, 2017, http://mng.bz/E1eq.
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Figure 7.1 This graph approximates the monthly cumulative count of unique GAN implementations 
published by the research community, starting from GAN’s invention in 2014 until the first few months 
of 2018. As the chart makes clear, the field of generative adversarial learning has been growing 
exponentially since its inception, and there is no end in sight to this growth in interest and popularity. 
(Source: “The GAN Zoo,” by Avinash Hindupur, 2017, https://github.com/hindupuravinash/the-gan-zoo.)

https://github.com/hindupuravinash/the-gan-zoo
https://shortener.manning.com/qXXJ
https://shortener.manning.com/E1eq
https://github.com/hindupuravinash/the-gan-zoo
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 It is worth noting that not all of these named variants diverge drastically from the
original GAN. Indeed, many of them are at a high level quite similar to the original
model, such as the DCGAN in chapter 4. Even the many complex innovations such as
the Wasserstein GAN (discussed in chapter 5) focus primarily on improving the per-
formance and stability of the original GAN model or one similar to it.

 In this and the following two chapters, we will focus on GAN variants that diverge
from the original GAN not only in the architecture and underlying mathematics of
their model implementations but also in their motivations and objectives. In particu-
lar, we will cover the following three GAN models:

 Semi-Supervised GAN (this chapter)
 Conditional GAN (chapter 8)
 CycleGAN (chapter 9)

For each of these GAN variants, you will learn about their objectives and what moti-
vated them, their model architectures, and how their networks train and work. These
topics will be covered both conceptually and through concrete examples. We will also
provide tutorials with full working implementations of each of these models so that
you can experience them firsthand.

 So, without further ado, let’s dive in!

7.1 Introducing the Semi-Supervised GAN
Semi-supervised learning is one of the most promising areas of practical application of
GANs. Unlike supervised learning, in which we need a label for every example in our
dataset, and unsupervised learning, in which no labels are used, semi-supervised
learning has a class label for only a small subset of the training dataset. By internaliz-
ing hidden structures in the data, semi-supervised learning strives to generalize from
the small subset of labeled data points to effectively classify new, previously unseen
examples. Importantly, for semi-supervised learning to work, the labeled and unla-
beled data must come from the same underlying distribution.

 The lack of labeled datasets is one of the main bottlenecks in machine learning
research and practical applications. Although unlabeled data is abundant (the inter-
net is a virtually limitless source of unlabeled images, videos, and text), assigning class
labels to them is often prohibitively expensive, impractical, and time-consuming. It
took two and a half years to hand-annotate the original 3.2 million images in the
ImageNet—a database of labeled images that helped enable many of the advances in
image processing and computer vision in the last decade.2

 Andrew Ng, a deep learning pioneer, Stanford professor, and former chief scientist
of the Chinese internet giant Baidu, identified the enormous amounts of labeled data
needed for training as the Achilles’ heel of supervised learning, which is used for the

2 See “The Data That Transformed AI Research—and Possibly the World,” by Dave Gershgorn, 2017, http://
mng.bz/DNVy.

https://shortener.manning.com/DNVy
https://shortener.manning.com/DNVy
https://shortener.manning.com/DNVy
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vast majority of today’s AI applications in industry.3 One of the industries that suffers
most from a lack of large labeled datasets is medicine, for which obtaining data (for
example, outcomes from clinical trials) often requires great effort and expenditure,
not to mention the even more important issues of ethics and privacy.4 Accordingly,
improving the ability of algorithms to learn from ever-smaller quantities of labeled
examples has immense practical importance. 

 Interestingly, semi-supervised learning may also be one of the closest machine
learning analogs to the way humans learn. When schoolchildren learn to read and
write, the teacher does not have to take them on a road trip to see tens of thousands of
examples of letters and numbers, ask them to identify these symbols, and correct
them as needed—similarly to the way a supervised learning algorithm would operate.
Instead, a single set of examples is all that is needed for children to learn letters and
numerals and then be able to recognize them regardless of font, size, angle, lighting
conditions, and many other factors. Semi-supervised learning aims to teach machines
in a similarly efficient manner.

 Serving as a source of additional information that can be used for training, gener-
ative models proved useful in improving the accuracy of semi-supervised models.
Unsurprisingly, GANs have proven the most promising. In 2016, Tim Salimans, Ian
Goodfellow, and their colleagues at OpenAI achieved almost 94% accuracy on the
Street View House Numbers (SVHN) benchmark dataset using only 2,000 labeled
examples.5 For comparison, the best fully supervised algorithm at the time that used
labels for all 73,257 images in the SVHN training set achieved an accuracy of around
98.40%.6 In other words, the Semi-Supervised GAN achieved overall accuracy remark-
ably close to the fully supervised benchmark, while using fewer than 3% of the labels
for training.

 Let’s find out how Salimans and his colleagues accomplished so much from so little.

7.1.1 What is a Semi-Supervised GAN?

Semi-Supervised GAN (SGAN) is a Generative Adversarial Network whose Discriminator is
a multiclass classifier. Instead of distinguishing between only two classes (real and fake), it
learns to distinguish between N + 1 classes, where N is the number of classes in the train-
ing dataset, with one added for the fake examples produced by the Generator. 

 For example, the MNIST dataset of handwritten digits has 10 labels (one label for
each numeral, 0 to 9), so the SGAN Discriminator trained on this dataset would pre-
dict between 10 + 1 = 11 classes. In our implementation, the output of the SGAN

3 See “What Artificial Intelligence Can and Can’t Do Right Now,” by Andrew Ng, 2016, http://mng.bz/lopj.
4 See “What AI Can and Can’t Do (Yet) for Your Business,” by Michael Chui et al., 2018, http://mng.bz/BYDv.
5 See “Improved Techniques for Training GANs,” by Ian Goodfellow et al., 2016, https://arxiv.org/abs/

1606.03498.
6 See “Densely Connected Convolutional Networks,” by Gao Huang et al., 2016, https://arxiv.org/abs/

1608.06993.

https://shortener.manning.com/lopj
https://shortener.manning.com/BYDv
https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
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Discriminator will be represented as a vector of 10 class probabilities (that sum up to
1.0) plus another probability that represents whether the image is real or fake.

 Turning the Discriminator from a binary to a multiclass classifier may seem like a
trivial change, but its implications are more far-reaching than may appear at first
glance. Let’s start with a diagram. Figure 7.2 shows the SGAN architecture.

As figure 7.2 indicates, the task of distinguishing between multiple classes not only
impacts the Discriminator itself, but also adds complexity to the SGAN architecture,
its training process, and its training objectives, as compared to the traditional GAN.

7.1.2 Architecture

The SGAN Generator’s purpose is the same as in the original GAN: it takes in a vector
of random numbers and produces fake examples whose goal is to be indistinguishable
from the training dataset—no change here. 

 The SGAN Discriminator, however, diverges considerably from the original GAN
implementation. Instead of two, it receives three kinds of inputs: fake examples pro-
duced by the Generator (x*), real examples without labels from the training dataset
(x), and real examples with labels from the training dataset (x, y), where y denotes the
label for the given example x. Instead of binary classification, the SGAN Discriminator’s

Labeled Class 1

Unlabeled

Class 2

Class n

Fake

Discriminator

Generator

x

(x, y)

…

z

x*

Figure 7.2 In this Semi-Supervised GAN, the Generator takes in a random noise 
vector z and produces a fake example x*. The Discriminator receives three kinds of 
data inputs: fake data from the Generator, real unlabeled examples x, and real 
labeled examples (x, y), where y is the label corresponding to the given example. The 
Discriminator then outputs a classification; its goal is to distinguish fake examples 
from the real ones and, for the real examples, identify the correct class. Notice that 
the portion of examples with labels is much smaller than the portion of the unlabeled 
data. In practice, the contrast is even starker than the one shown, with labeled data 
forming only a tiny fraction (often as little as 1–2%) of the training data.
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goal is to correctly categorize the input example into its corresponding class if the
example is real, or reject the example as fake (which can be thought of as a special
additional class). 

 Table 7.1 summarizes the key takeaways about the two SGAN subnetworks.

7.1.3 Training process

Recall that in a regular GAN, we train the Discriminator by computing the loss for
D(x) and D(x*) and backpropagating the total loss to update the Discriminator’s train-
able parameters to minimize the loss. The Generator is trained by backpropagating
the Discriminator’s loss for D(x*), seeking to maximize it, so that the fake examples it
synthesizes are misclassified as real.

 To train the SGAN, in addition to D(x) and D(x*), we also have to compute the loss
for the supervised training examples: D((x, y)). These losses correspond to the dual
learning objective that the SGAN Discriminator has to grapple with: distinguishing
real examples from the fake ones while also learning to classify real examples to their
correct classes. Using the terminology from the original paper, these dual objectives cor-
respond to two kinds of losses: the supervised loss and the unsupervised loss.7 

7.1.4 Training objective

All the GAN variants you have seen so far are generative models. Their goal is to pro-
duce realistic-looking data samples; hence, the Generator network has been of pri-
mary interest. The main purpose of the Discriminator network has been to help the
Generator improve the quality of images it produces. At the end of the training, we

Table 7.1 SGAN Generator and Discriminator networks

Generator Discriminator

Input A vector of random numbers (z) The Discriminator receives three kinds of inputs:
 Unlabeled real examples (x) coming from the 

training dataset
 Labeled real examples (x, y) coming from the 

training dataset
 Fake examples (x*) produced by the Generator

Output Fake examples (x*) that strive to be as 
convincing as possible

Probabilities, indicating the likelihood that the input 
example belongs either to one of the N real classes 
or to the fake class 

Goal Generate fake examples that are indis-
tinguishable from members of the 
training dataset by fooling the Discrimi-
nator into classifying them as real

Learn to assign the correct class label to real exam-
ples while rejecting all examples coming from the 
Generator as fake

7 See “Improved Techniques for Training GANs,” by Tim Salimans et al., 2016, https://arxiv.org/abs/
1606.03498.

https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1606.03498
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often disregard the Discriminator and use only the fully trained Generator to create
realistic-looking synthetic data.

 In contrast, in a SGAN, we care primarily about the Discriminator. The goal of the
training process is to make this network into a semi-supervised classifier whose accu-
racy is as close as possible to a fully supervised classifier (one that has labels available
for each example in the training dataset), while using only a small fraction of the
labels. The Generator’s goal is to aid this process by serving as a source of additional
information (the fake data it produces) that helps the Generator learn the relevant
patterns in the data, enhancing its classification accuracy. At the end of the training,
the Generator gets discarded, and we use the trained Discriminator as a classifier.

 Now that you’ve learned what motivated the creation of the SGAN and we’ve
explained how the model works, it is time to see the model in action by implementing one.

7.2 Tutorial: Implementing a Semi-Supervised GAN 
In this tutorial, we implement an SGAN model that learns to classify handwritten dig-
its in the MNIST dataset by using only 100 training examples. At the end of the tuto-
rial, we compare the model’s classification accuracy to an equivalent fully supervised
model to see for ourselves the improvement achieved by semi-supervised learning.

7.2.1 Architecture diagram

Figure 7.3 shows a high-level diagram of the SGAN model implemented in this tuto-
rial. It is a bit more complex than the general, conceptual diagram we introduced at
the beginning of this chapter. After all, the devil is in the (implementation) details.

x

(x, y)

x*
Generator

Softmax

0

1

…
9

Fake

Discriminator

z

Sigmoid

Figure 7.3 This SGAN diagram is a high-level illustration of the SGAN we implement in this 
chapter’s tutorial. The Generator turns random noise into fake examples. The Discriminator 
receives real images with labels (x, y), real images without labels (x), and fake images 
produced by the Generator (x*). To distinguish real examples from fake ones, the Discriminator 
uses the sigmoid function. To distinguish between the real classes, the Discriminator uses the 
softmax function. 
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To solve the multiclass classification problem of distinguishing between the real
labels, the Discriminator uses the softmax function, which gives probability distribution
over a specified number of classes—in our case, 10. The higher the probability
assigned to a given label, the more confident the Discriminator is that the example
belongs to the given class. To compute the classification error, we use cross-entropy
loss, which measures the difference between the output probabilities and the target,
one-hot-encoded labels. 

 To output the real-versus-fake probability, the Discriminator uses the sigmoid activa-
tion function and trains its parameters by backpropagating the binary cross-entropy
loss—the same as the GANs we implemented in chapters 3 and 4. 

7.2.2 Implementation 

As you may notice, much of our SGAN implementation is adapted from the DCGAN
model from chapter 4. This is not out of laziness (well, maybe a little . . .), but rather
so that you can better see the distinct modifications needed for SGAN without any dis-
tractions from implementation details in unrelated parts of the network.

 A Jupyter notebook with the full implementation, including added visualizations
of the training progress, is available in our GitHub repository (https://github.com/
GANs-in-Action/gans-in-action), under the chapter-7 folder. The code was tested with
Python 3.6.0, Keras 2.1.6, and TensorFlow 1.8.0. To speed up the training time, we rec-
ommend running the model on a GPU.

7.2.3 Setup

As usual, we start off by importing all the modules and libraries needed to run the
model, as shown in the following listing.

%matplotlib inline

import matplotlib.pyplot as plt
import numpy as np

from keras import backend as K

from keras.datasets import mnist
from keras.layers import (Activation, BatchNormalization, Concatenate, Dense,
                          Dropout, Flatten, Input, Lambda, Reshape)
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import Conv2D, Conv2DTranspose
from keras.models import Model, Sequential
from keras.optimizers import Adam
from keras.utils import to_categorical

We also specify the input image size, the size of the noise vector z, and the number of
the real classes for the semi-supervised classification (one for each numeral our Dis-
criminator will learn to identify), as shown in the following listing.

Listing 7.1 Import statements

https://github.com/GANs-in-Action/gans-in-action
https://github.com/GANs-in-Action/gans-in-action
https://github.com/GANs-in-Action/gans-in-action
https://github.com/GANs-in-Action/gans-in-action
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img_rows = 28
img_cols = 28
channels = 1

img_shape = (img_rows, img_cols, channels)  

z_dim = 100              

num_classes = 10     

7.2.4 The dataset

Although the MNIST training dataset has 50,000 labeled training images, we will use
only a small fraction of them (specified by the num_labeled parameter) for training
and pretend that all the remaining ones are unlabeled. We accomplish this by sam-
pling only from the first num_labeled images when generating batches of labeled data
and from the remaining (50,000 – num_labeled) images when generating batches of
unlabeled examples.

 The Dataset object (shown in listing 7.3) also provides a function to return all the
num_labeled training examples along with their labels as well as a function to return
all 10,000 labeled test images in the MNIST dataset. After training, we will use the test
set to evaluate how well the model’s classifications generalize to previously unseen
examples.

class Dataset:
    def __init__(self, num_labeled):

        self.num_labeled = num_labeled      

        (self.x_train, self.y_train), (self.x_test,     
                                       self.y_test) = mnist.load_data()

        def preprocess_imgs(x):
            x = (x.astype(np.float32) - 127.5) / 127.5    
            x = np.expand_dims(x, axis=3)       
            return x

        def preprocess_labels(y):
            return y.reshape(-1, 1)

        self.x_train = preprocess_imgs(self.x_train)       
        self.y_train = preprocess_labels(self.y_train)

        self.x_test = preprocess_imgs(self.x_test)       
        self.y_test = preprocess_labels(self.y_test)

Listing 7.2 Model input dimensions 

Listing 7.3 Dataset for training and testing

Input image 
dimensions

Size of the noise vector, used 
as input to the Generator

Number of classes 
in the dataset

Number of labeled examples 
to use for training

Loads the MNIST 
dataset

Rescales [0, 255] 
grayscale pixel 
values to [–1, 1]

Expands image dimensions to 
width × height × channels

Training 
data

Testing 
data
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    def batch_labeled(self, batch_size):
        idx = np.random.randint(0, self.num_labeled, batch_size)  
        imgs = self.x_train[idx]
        labels = self.y_train[idx]
        return imgs, labels

    def batch_unlabeled(self, batch_size):
        idx = np.random.randint(self.num_labeled, self.x_train.shape[0],   
                                batch_size)
        imgs = self.x_train[idx]
        return imgs

    def training_set(self):
        x_train = self.x_train[range(self.num_labeled)]
        y_train = self.y_train[range(self.num_labeled)]
        return x_train, y_train

    def test_set(self):
        return self.x_test, self.y_test

In this tutorial, we will pretend that we have only 100 labeled MNIST images for
training:

num_labeled = 100    

dataset = Dataset(num_labeled)

7.2.5 The Generator

The Generator network is the same as the one we implemented for the DCGAN in
chapter 4. Using transposed convolution layers, the Generator transforms the input
random noise vector into 28 × 28 × 1 image; see the following listing.

def build_generator(z_dim):

    model = Sequential()

    model.add(Dense(256 * 7 * 7, input_dim=z_dim))    
    model.add(Reshape((7, 7, 256)))

    model.add(Conv2DTranspose(128, kernel_size=3, strides=2, padding='same'))

    model.add(BatchNormalization())        

    model.add(LeakyReLU(alpha=0.01))     

    model.add(Conv2DTranspose(64, kernel_size=3, strides=1, padding='same'))

    model.add(BatchNormalization())   

    model.add(LeakyReLU(alpha=0.01))    

Listing 7.4 SGAN Generator

ets a random
batch of

beled images
d their labels
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andom batch
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via a fully connected 
layer

ansposed
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 7 × 256

4 × 14 ×
28 tensor

Batch normalization

Leaky ReLU activation

ansposed
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yer, from
14 × 128
4 × 14 ×
64 tensor

Batch normalization

Leaky ReLU activation
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    model.add(Conv2DTranspose(1, kernel_size=3, strides=2, padding='same'))

    model.add(Activation('tanh'))  

    return model

7.2.6 The Discriminator

The Discriminator is the most complex part of the SGAN model. Recall that the
SGAN Discriminator has a dual objective: 

 Distinguish real examples from fake ones. For this, the SGAN Discriminator
uses the sigmoid function, outputting a single output probability for binary clas-
sification. 

 For the real examples, accurately classify their label. For this, the SGAN Dis-
criminator uses the softmax function, outputting a vector of probabilities, one
for each of the target classes.

THE CORE DISCRIMINATOR NETWORK

We start by defining the core Discriminator network. As you may notice, the model in
listing 7.5 is similar to the ConvNet-based Discriminator we implemented in chapter 4;
in fact, it is exactly the same all the way until the 3 × 3 × 128 convolutional layer, its
batch normalization, and Leaky ReLU activation.

 After that layer, we add a dropout, a regularization technique that helps prevent
overfitting by randomly dropping neurons and their connections from the neural net-
work during training.8 This forces the remaining neurons to reduce their codepen-
dence and develop a more general representation of the underlying data. The
fraction of the neurons to be randomly dropped is specified by the rate parameter,
which is set to 0.5 in our implementation: model.add(Dropout(0.5)). We add drop-
out because of the increased complexity of the SGAN classification task and to
improve the model’s ability to generalize from only 100 labeled examples.

def build_discriminator_net(img_shape):

    model = Sequential()

    model.add(          
        Conv2D(32,
               kernel_size=3,
               strides=2,
               input_shape=img_shape,
               padding='same'))

8 See “Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors,” by Geoffrey E. Hinton
et al., 2012, https://arxiv.org/abs/1207.0580. See also “Dropout: A Simple Way to Prevent Neural Networks
from Overfitting,” by Nitish Srivastava et al., 2014, Journal of Machine Learning Research 15, 1929–1958.

Listing 7.5 SGAN Discriminator

Transposed convolution
layer, from 14 × 14 ×

64 to 28 × 28 × 1
tensor

Output layer 
with tanh 
activation

Convolutional layer, 
from 28 × 28 × 1 into 
14 × 14 × 32 tensor

https://arxiv.org/abs/1207.0580
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    model.add(LeakyReLU(alpha=0.01))     

    model.add(                  
        Conv2D(64,
               kernel_size=3,
               strides=2,
               input_shape=img_shape,
               padding='same'))

    model.add(BatchNormalization())     

    model.add(LeakyReLU(alpha=0.01))   

    model.add(                     
        Conv2D(128,
               kernel_size=3,
               strides=2,
               input_shape=img_shape,
               padding='same'))

    model.add(BatchNormalization())    

    model.add(LeakyReLU(alpha=0.01))    

    model.add(Dropout(0.5)) 

    model.add(Flatten())    

    model.add(Dense(num_classes))    

    return model

Note that the dropout layer is added after batch normalization and not the other way
around; this has shown to have superior performance due to the interplay between
the two techniques.9 

 Also, notice that the preceding network ends with a fully connected layer with 10
neurons. Next, we need to define the two Discriminator outputs computed from these
neurons: one for the supervised, multiclass classification (using softmax) and the other
for the unsupervised, binary classification (using sigmoid).

THE SUPERVISED DISCRIMINATOR 
In the following listing, we take the core Discriminator network implemented previ-
ously and use it to build the supervised portion of the Discriminator model.

 
 
 

9 See “Understanding the Disharmony between Dropout and Batch Normalization by Variance Shift,” by Xiang
Li et al., 2018, https://arxiv.org/abs/1801.05134.

Leaky ReLU 
activation

Convolutional layer, from 
14 × 14 × 32 into 7 × 7 
× 64 tensor

Batch normalization

Leaky ReLU activation

Convolutional layer, from 
7 × 7 × 64 tensor into 
3 × 3 × 128 tensor

Batch normalization

Leaky ReLU activation

Dropout

Flattens the tensor

Fully connected layer with 
num_classes neurons

https://arxiv.org/abs/1801.05134
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def build_discriminator_supervised(discriminator_net):

    model = Sequential()

    model.add(discriminator_net)

    model.add(Activation('softmax'))   

    return model

THE UNSUPERVISED DISCRIMINATOR 
The following listing implements the unsupervised portion of the Discriminator
model on top of the core Discriminator network. Notice the predict(x) function, in
which we transform the output of the 10 neurons (from the core Discriminator net-
work) into a binary, real-versus-fake prediction.

def build_discriminator_unsupervised(discriminator_net):

    model = Sequential()

    model.add(discriminator_net)

    def predict(x):
        prediction = 1.0 - (1.0 /      
                            (K.sum(K.exp(x), axis=-1, keepdims=True) + 1.0))
        return prediction

    model.add(Lambda(predict))   

    return model

7.2.7 Building the model

Next, we build and compile the Discriminator and Generator models. Notice the use
of categorical_crossentropy and binary_crossentropy loss functions for the super-
vised loss and the unsupervised loss, respectively.

def build_gan(generator, discriminator):

    model = Sequential()

    model.add(generator)       
    model.add(discriminator)

    return model

Listing 7.6 SGAN Discriminator: supervised

Listing 7.7 SGAN Discriminator: unsupervised

Listing 7.8 Building the models

Softmax activation, outputs 
predicted probability distribution 
over the real classes

Transforms distribution over 
real classes into binary real-
versus-fake probability

Real-versus-fake output 
neuron defined previously

Combined Generator + 
Discriminator model
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discriminator_net = build_discriminator_net(img_shape)  

discriminator_supervised = build_discriminator_supervised(discriminator_net)
discriminator_supervised.compile(loss='categorical_crossentropy',           
                                 metrics=['accuracy'],                      
                                 optimizer=Adam())                          

discriminator_unsupervised = build_discriminator_unsupervised(
                                 discriminator_net)         
discriminator_unsupervised.compile(loss='binary_crossentropy',
                                   optimizer=Adam())
generator = build_generator(z_dim)  
discriminator_unsupervised.trainable = False    
gan = build_gan(generator, discriminator_unsupervised)     
gan.compile(loss='binary_crossentropy', optimizer=Adam())  

7.2.8 Training

The following pseudocode outlines the SGAN training algorithm.

SGAN training algorithm
For each training iteration do 

1 Train the Discriminator (supervised):

a Take a random mini-batch of labeled real examples (x, y).
b Compute D((x, y)) for the given mini-batch and backpropagate the multi-

class classification loss to update  (D) to minimize the loss.

2 Train the Discriminator (unsupervised):

a Take a random mini-batch of unlabeled real examples x. 
b Compute D(x) for the given mini-batch and backpropagate the binary clas-

sification loss to update  (D) to minimize the loss.
c Take a mini-batch of random noise vectors z and generate a mini-batch of

fake examples: G(z) = x*.
d Compute D(x*) for the given mini-batch and backpropagate the binary

classification loss to update  (D) to minimize the loss.

3 Train the Generator:

a Take a mini-batch of random noise vectors z and generate a mini-batch of
fake examples: G(z) = x*.

b Compute D(x*) for the given mini-batch and backpropagate the binary
classification loss to update  (G) to maximize the loss.

End for
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The following listing implements the SGAN training algorithm.

supervised_losses = []
iteration_checkpoints = []

def train(iterations, batch_size, sample_interval):

    real = np.ones((batch_size, 1))        

    fake = np.zeros((batch_size, 1))     

    for iteration in range(iterations):

          

        imgs, labels = dataset.batch_labeled(batch_size)     

        labels = to_categorical(labels, num_classes=num_classes)  

        imgs_unlabeled = dataset.batch_unlabeled(batch_size)  

        z = np.random.normal(0, 1, (batch_size, z_dim))    
        gen_imgs = generator.predict(z)

        d_loss_supervised, 
                 accuracy = discriminator_supervised.train_on_batch(imgs, labels)

        d_loss_real = discriminator_unsupervised.train_on_batch(   
            imgs_unlabeled, real)

        d_loss_fake = discriminator_unsupervised.train_on_batch(gen_imgs, fake)

        d_loss_unsupervised = 0.5 * np.add(d_loss_real, d_loss_fake)

                   

        z = np.random.normal(0, 1, (batch_size, z_dim))  
        gen_imgs = generator.predict(z)

        g_loss = gan.train_on_batch(z, np.ones((batch_size, 1)))    

        if (iteration + 1) % sample_interval == 0:

            supervised_losses.append(d_loss_supervised)   
            iteration_checkpoints.append(iteration + 1)

            print(
                "%d [D loss supervised: %.4f, acc.: %.2f%%] [D loss" +
                " unsupervised: %.4f] [G loss: %f]"
                % (iteration + 1, d_loss_supervised, 100 * accuracy,
                  (d_loss_unsupervised, g_loss))

Listing 7.9 SGAN training algorithm
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TRAINING THE MODEL 
We use a smaller batch size because we have only 100 labeled examples for training.
The number of iterations is determined by trial and error: we keep increasing the
number until the Discriminator’s supervised loss plateaus, but not too far past that
point (to reduce the risk of overfitting):

iterations = 8000      
batch_size = 32
sample_interval = 800

train(iterations, batch_size, sample_interval)    

MODEL TRAINING AND TEST ACCURACY

And now for the moment we have all been waiting for—let’s find out how our SGAN
performs as a classifier. During training, we see that we achieved supervised accuracy
of 100%. Although this may seem impressive, remember that we have only 100 labeled
examples from which to sample for supervised training. Perhaps our model just mem-
orized the training dataset. What matters is how well our classifier can generalize to
the previously unseen data in the training set, as shown in the following listing.

x, y = dataset.test_set()
y = to_categorical(y, num_classes=num_classes)

_, accuracy = discriminator_supervised.evaluate(x, y)   
print("Test Accuracy: %.2f%%" % (100 * accuracy))

Drum roll, please.
 Our SGAN is able to accurately classify about 89% of the examples in the test set. To

see how remarkable this is, let’s compare its performance to a fully supervised classifier.

7.3 Comparison to a fully supervised classifier
To make the comparison as fair as possible, we use the same network architecture for
the fully supervised classifier as the one used for the supervised Discriminator train-
ing, as shown in the following listing. The idea is that this will allow us to isolate the
improvement to the classifier’s ability to generalize that was achieved through the GAN-
enabled semi-supervised learning.

mnist_classifier = build_discriminator_supervised(
                         build_discriminator_net(img_shape))     
mnist_classifier.compile(loss='categorical_crossentropy',
                         metrics=['accuracy'],
                         optimizer=Adam())

Listing 7.10 Training the model

Listing 7.11 Checking the accuracy

Listing 7.12 Fully supervised classifier 

Sets 
hyperparameters Trains the SGAN for 

the specified number 
of iterations

Computes 
classification accuracy 
on the test set

Fully supervised 
classifier with the 
same network 
architecture as the 
SGAN Discriminator
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We train the fully supervised classifier by using the same 100 training examples we
used to train our SGAN. For brevity, the training code and the code outputting the
training and test accuracy are not shown here. You can find the code in our GitHub
repository, in the SGAN Jupyter notebook under the chapter-7 folder.

 Like the SGAN Discriminator, the fully supervised classifier achieved 100% accu-
racy on the training dataset. On the test set, however, it was able to correctly classify
only about 70% of the examples—about a whopping 20 percentage points worse than
our SGAN. Put differently, the SGAN improved the training accuracy by almost 30%!

 With a lot more training data, the fully supervised classifier’s ability to generalize
improves dramatically. Using the same setup and training, the fully supervised classifier
with 10,000 labeled examples (100 times as many as we originally used), we achieve an
accuracy of about 98%. But that would no longer be a semi-supervised setting.

7.4 Conclusion
In this chapter, we explored how GANs can be used for semi-supervised learning by
teaching the Discriminator to output class labels for real examples. You saw that the
SGAN-trained classifier’s ability to generalize from a small number of training exam-
ples is significantly better than a comparable, fully supervised classifier. 

 From a GAN innovation perspective, a key distinguishing feature of the SGAN is
the use of labels for Discriminator training. You may be wondering whether labels can
be leveraged for Generator training as well. Funny you should ask—that is what the
GAN variant in the next chapter (Conditional GAN) is all about.

Summary
 Semi-Supervised GAN (SGAN) is a Generative Adversarial Network whose Dis-

criminator learns to do the following:
– Distinguish fake examples from real ones
– Assign the correct class label to the real examples

 The purpose of a SGAN is to train the Discriminator into a classifier that can
achieve superior classification accuracy from as few labeled examples as possi-
ble, thereby reducing the dependency of classification tasks on enormous
labeled datasets.

 In our implementation, we used softmax and multiclass cross-entropy loss for the
supervised task of assigning real labels, and sigmoid and binary cross-entropy for
the task of distinguishing between real and fake data.

 We demonstrated that SGAN’s classification accuracy on the previously unseen
data in the test set is far superior to a comparable fully supervised classifier
trained on the same number of labeled training examples.



Conditional GAN
In the previous chapter, you learned about the SGAN, which introduced you to the
idea of using labels in GAN training. SGANs use labels to train the Discriminator
into a powerful semi-supervised classifier. In this chapter, you’ll learn about the
Conditional GAN (CGAN), which uses labels to train both the Generator and the Dis-
criminator. Thanks to this innovation, a Conditional GAN allows us to direct the
Generator to synthesize the kind of fake examples we want. 

8.1 Motivation
As you have seen throughout this book, GANs are capable of producing examples
ranging from simple handwritten digits to photorealistic images of human faces.
However, although we could control the domain of examples our GAN learned to
emulate by our selection of the training dataset, we could not specify any of the

This chapter covers
 Using labels to train both the Generator and the 

Discriminator 

 Teaching GANs to generate examples matching 
a specified label

 Implementing a Conditional GAN (CGAN) to 
generate handwritten digits of our choice
127
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characteristics of the data samples the GAN would generate. For instance, the DCGAN
we implemented in chapter 4 could synthesize realistic-looking handwritten digits, but
we could not control whether it would produce, say, the number 7 rather than the
number 9 at any given time. 

 On simple datasets like the MNIST, in which examples belong to only one of 10
classes, this concern may seem trivial. If, for instance, our goal is to produce the num-
ber 9, we can just keep generating examples until we get the number we want. On
more complex data-generation tasks, however, the domain of possible answers gets
too large for such a brute-force solution to be practical. Take, for example, the task of
generating human faces. As impressive as the images produced by the Progressive
GAN from chapter 6 are, we have no control over what face will get produced. There
is no way to direct the Generator to synthesize, say, a male or a female face, let alone
other features such as age or facial expression. 

 The ability to decide what kind of data will be generated opens the door to a vast
array of applications. As a somewhat contrived example, imagine that we are detec-
tives solving a murder mystery, and a witness describes the killer as a middle-aged
woman with long red hair and green eyes. It would greatly expedite the process if
instead of hiring a sketch artist (who can produce only one sketch at a time), we could
enter the descriptive features into a computer program and have it output a range of
faces matching the criteria. Our witness then could point us to the one that resembles
the criminal most closely.

 We are sure you can think of many other practical applications for which the ability
to generate an image that matches the criteria of our choice would be a game-
changer. In medical research, we could guide the creation of new drug compounds; in
filmmaking and computer-generated imagery (CGI), we could create the exact scene
we want with minimal input from human animators. The list goes on.

 The CGAN is one of the first GAN innovations that made targeted data generation
possible, and arguably the most influential one. In the remainder of this chapter, you
will learn how CGANs work and implement a small-scale version by using (you
guessed it!) the MNIST dataset.

8.2 What is Conditional GAN? 
Introduced in 2014 by University of Montreal PhD student Mehdi Mirza and Flickr AI
architect Simon Osindero, Conditional GAN is a generative adversarial network whose
Generator and Discriminator are conditioned during training by using some addi-
tional information.1 This auxiliary information could be, in theory, anything, such as a
class label, a set of tags, or even a written description. For clarity and simplicity, we will
use labels as the conditioning information as we explain how CGAN works.

 During CGAN training, the Generator learns to produce realistic examples for
each label in the training dataset, and the Discriminator learns to distinguish fake

1 See “Conditional Generative Adversarial Nets,” by Mehdi Mirza and Simon Osindero, 2014, https://arxiv.org/
abs/1411.1784.

https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
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example-label pairs from real example-label pairs. In contrast to the Semi-Supervised
GAN from the previous chapter, whose Discriminator learns to assign the correct label
to each real example (in addition to distinguishing real examples from fake ones),
the Discriminator in a CGAN does not learn to identify which class is which. It learns
only to accept real, matching pairs while rejecting pairs that are mismatched and pairs
in which the example is fake. 

 For example, the CGAN Discriminator should learn to reject the pair ( , 4),
regardless of whether the example (handwritten numeral 3) is real or fake, because it
does not match the label, 4. The CGAN Discriminator should also learn to reject all
image-label pairs in which the image is fake, even if the label matches the image. 

 Accordingly, in order to fool the Discriminator, it is not enough for the CGAN
Generator to produce realistic-looking data. The examples it generates also need to
match their labels. After the Generator is fully trained, this then allows us to specify
what example we want the CGAN to synthesize by passing it the desired label.

8.2.1 CGAN Generator

To formalize things a bit, let’s call the conditioning label y. The Generator uses the
noise vector z and the label y to synthesize a fake example G(z, y) = x* |y (read as “x*
given that, or conditioned on, y”). The goal of this fake example is to look (in the eyes
of the Discriminator) as close as possible to a real example for the given label. Figure 8.1
illustrates the Generator.

8.2.2 CGAN Discriminator

The Discriminator receives real examples with labels (x, y), and fake examples with
the label used to generate them, (x*|y, y). On the real example-label pairs, the Dis-
criminator learns how to recognize real data and how to recognize matching pairs. On
the Generator-produced examples, it learns to recognize fake image-label pairs,
thereby learning to tell them apart from the real ones.

 The Discriminator outputs a single probability indicating its conviction that the
input is a real, matching pair. The Discriminator’s goal is to learn to reject all fake
examples and all examples that fail to match their label, while accepting all real
example-label pairs, as shown in figure 8.2.

Generator x*|y

z

y

Figure 8.1 CGAN Generator: G(z, y) = x*|y. 
Using random noise vector z and label y as 
inputs, the Generator produces a fake example 
x*|y that strives to be a realistic-looking match 
for the label.
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8.2.3 Summary table

The two CGAN subnetworks, their inputs, outputs, and objectives are summarized in
table 8.1. 

8.2.4 Architecture diagram

Putting it all together, figure 8.3 shows a high-level architecture diagram of a CGAN.
Notice that for each fake example, the same label y is passed to both the Generator
and the Discriminator. Also, note that the Discriminator is never explicitly trained to
reject mismatched pairs by being trained on real examples with mismatching labels;
its ability to identify mismatched pairs is a by-product of being trained to accept only
real matching pairs.

 

Table 8.1 CGAN Generator and Discriminator networks

Generator Discriminator

Input A vector of random numbers and a label: 
(z, y)

The Discriminator receives the following inputs:
 Real examples with labels coming from the 

training dataset: (x, y)
 Fake examples created by the Generator to 

match a given label, along with the label: 
(x*|y, y)

Output Fake examples that strive to be as con-
vincing as possible in matches for their 
labels: G(z, y) = x*|y

A single probability indicating whether the input 
example is a real, matching example-label pair

Goal Generate realistic-looking fake data that 
match their labels

Distinguish between fake example-label pairs 
coming from the Generator and real example-
label pairs coming from the training dataset

Discriminator �

x*| y xor

y

Figure 8.2 The CGAN Discriminator receives real examples along 
with their labels (x, y) and fake examples along with the label used to 
synthesize them (x*|y, y). The Discriminator then outputs a probability 
(computed by the sigmoid activation function ) indicating whether 
the input pair is real rather than fake.
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NOTE You may have noticed a pattern: for almost every GAN variant, we pres-
ent you with a table summarizing the inputs, outputs, and objectives of the
Discriminator and Generator networks, and with a network architecture dia-
gram. This is not by accident; indeed, one of the main goals of these chapters
is to give you a mental template—a reusable framework of sorts—for the kind
of things to look for when you encounter GAN implementations that diverge
from the original GAN. Analyzing the Generator and Discriminator networks
and the overall model architecture are often the best first steps.

The CGAN Discriminator receives fake labeled examples (x* |y, y) produced by the
Generator and real labeled examples (x, y), and it learns to tell whether a given
example-label is real or fake.

 Enough for theory. It’s time we put what you have learned into practice and imple-
ment our own CGAN model.

8.3 Tutorial: Implementing a Conditional GAN
In this tutorial, we will implement a CGAN model that learns to generate handwritten
digits of our choice. At the end, we will generate a sample of images for each numeral
to see how well the model learned to generate targeted data.

8.3.1 Implementation

Our implementation is inspired by the CGAN in the open source GitHub repository
of GAN models in Keras (the same one we used in chapters 3 and 4).2 In particular, we
use the repository’s approach of using Embedding layers to combine examples and
labels into joint hidden representations (more on this later). 

2 See Erik Linder-Norén’s Keras-GAN GitHub repository, 2017, https://github.com/eriklindernoren/Keras-GAN.

DiscriminatorGenerator
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Figure 8.3 The CGAN Generator uses a random noise vector z and a label y (one of the 
n possible labels) as inputs and produces a fake example x*|y that strives to be both 
realistic looking and a convincing match for the label y. 

https://github.com/eriklindernoren/Keras-GAN
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 The rest of our CGAN model, however, diverges from the one found in the Keras-
GAN repository. We refactored the embedding implementation to be more readable
and added detailed explanatory comments. Crucially, we also adapted our CGAN to
use convolutional neural networks, which yield significantly more realistic examples—
recall the difference between the images produced by the GAN in chapter 3 and the
DCGAN in chapter 4!

 A Jupyter notebook with the full implementation, including added visualizations
of the training progress, is available in our GitHub repository, under the chapter-8
folder: https://github.com/GANs-in-Action/gans-in-action. The code was tested with
Python 3.6.0, Keras 2.1.6, and TensorFlow 1.8.0. To speed up the training time, we rec-
ommend running the model on a GPU.

8.3.2 Setup

You guessed it—the first step is to import all the modules and libraries needed for our
model, as shown in the following listing.

%matplotlib inline

import matplotlib.pyplot as plt
import numpy as np

from keras.datasets import mnist
from keras.layers import (
        Activation, BatchNormalization, Concatenate, Dense,
        Embedding, Flatten, Input, Multiply, Reshape)
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import Conv2D, Conv2DTranspose
from keras.models import Model, Sequential
from keras.optimizers import Adam

Just as before, we also specify the input image size, the size of the noise vector z, and
the number of classes in our dataset, as shown here.

img_rows = 28
img_cols = 28
channels = 1

img_shape = (img_rows, img_cols, channels)     

z_dim = 100    

num_classes = 10   

Listing 8.1 Import statements

Listing 8.2 Model input dimensions

Input image 
dimensions

Size of the noise 
vector, used as input 
to the GeneratorNumber of classes 

in the dataset

https://github.com/GANs-in-Action/gans-in-action
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8.3.3 CGAN Generator

In this section, we implement the CGAN Generator. By now, you should be familiar
with much of this network from chapters 4 and 7. The modifications made for the
CGAN center around input handling, where we use embedding and element-wise
multiplication to combine the random noise vector z and the label y into a joint repre-
sentation. Let’s walk through what the code does:

1 Take label y (an integer from 0 to 9) and turn it into a dense vector of size z_dim
(the length of the random noise vector) by using the Keras Embedding layer. 

2 Combine the label embedding with the noise vector z into a joint representa-
tion by using the Keras Multiply layer. As its name suggests, this layer multi-
plies the corresponding entries of the two equal-length vectors and outputs a
single vector of the resulting products. 

3 Feed the resulting vector as input into the rest of the CGAN Generator network
to synthesize an image. 

Figure 8.4 illustrates the process, using the label 7 as an example.

First, we embed the label into a vector of the same size as z. Second, we multiply the
corresponding elements of the embedded label and z (the symbol  denotes ele-
ment-wise multiplication). The resulting joined representation is then used as input
into the CGAN Generator network.

 And finally, the following listing shows what it all looks like in Python/Keras code.

def build_generator(z_dim):

    model = Sequential()

    model.add(Dense(256 * 7 * 7, input_dim=z_dim))  
    model.add(Reshape((7, 7, 256)))

    model.add(Conv2DTranspose(128, kernel_size=3, strides=2, padding='same'))

    model.add(BatchNormalization())        

Listing 8.3 CGAN Generator
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Figure 8.4 The steps used to combine 
the conditioning label (7 in this example) 
and the random noise vector z into a 
single joint representation
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    model.add(LeakyReLU(alpha=0.01))  

    model.add(Conv2DTranspose(64, kernel_size=3, strides=1, padding='same'))

    model.add(BatchNormalization())    

    model.add(LeakyReLU(alpha=0.01))   

    model.add(Conv2DTranspose(1, kernel_size=3, strides=2, padding='same')) 

    model.add(Activation('tanh'))   

    return model

def build_cgan_generator(z_dim):

    z = Input(shape=(z_dim, ))    

    label = Input(shape=(1, ), dtype='int32')   

    label_embedding = Embedding(num_classes, z_dim, input_length=1)(label) 

    label_embedding = Flatten()(label_embedding)  

    joined_representation = Multiply()([z, label_embedding])   

    generator = build_generator(z_dim)

    conditioned_img = generator(joined_representation)   

    return Model([z, label], conditioned_img)

8.3.4 CGAN Discriminator

Next, we implement the CGAN Discriminator. Just as in the previous section, the net-
work architecture should look familiar to you, except for the piece where we handle
the input image and its label. Here, too, we use the Keras Embedding layer to turn
input labels into dense vectors. However, unlike the Generator, where the model
input is a flat vector, the Discriminator receives three-dimensional images. This neces-
sitates customized handling, described in the following steps:

1 Take a label (an integer from 0 to 9) and—using the Keras Embedding layer—
turn the label into a dense vector of size 28 × 28 × 1 = 784 (the length of a flat-
tened image).

2 Reshape the label embeddings into the image dimensions (28 × 28 × 1).
3 Concatenate the reshaped label embedding onto the corresponding image,

creating a joint representation with the shape (28 × 28 × 2). You can think of it
as an image with its embedded label “stamped” on top of it. 
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4 Feed the image-label joint representation as input into the CGAN Discrimina-
tor network. Note that in order for things to work, we have to adjust the model
input dimensions to (28 × 28 × 2) to reflect the new input shape.

Again, to make it less abstract, let’s see what the process looks like visually, using the
label 7 as an example; see figure 8.5.

First, we embed the label into a vector the size of a flattened image (28 × 28 × 1 = 784).
Second, we reshape the embedded label into a tensor with the same shape as the
input image (28 × 28 × 1). Third, we concatenate the reshaped label that is embed-
ding onto the corresponding image. This joined representation is then passed as
input into the CGAN Discriminator network.

 In addition to the preprocessing steps, we have to make a few additional adjust-
ments to the Discriminator network compared to the one in chapter 4. (As in the pre-
vious chapter, basing the model on our DCGAN implementation should make it
easier to see the CGAN-specific changes without distractions from implementation
details in unrelated parts of the model.) First, we have to adjust the model input
dimensions to (28 × 28 × 2) to reflect the new input shape. 

 Second, we increase the depth of the first convolutional layer from 32 to 64. The
reasoning behind this change is that there is more information to encode because of
the concatenated label embedding; this network architecture indeed yielded better
results experimentally. 
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Figure 8.5 The steps used to combine the label (7 in this case) and the input 
image into a single joint representation
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Lab
in
 At the output layer, we use the sigmoid activation function to produce a probability
that the input image-label pair is real rather than fake—no change here. And finally,
the following listing is our CGAN Discriminator implementation.

def build_discriminator(img_shape):

    model = Sequential()

    model.add(             
        Conv2D(64,
               kernel_size=3,
               strides=2,
               input_shape=(img_shape[0], img_shape[1], img_shape[2] + 1),
               padding='same'))

    model.add(LeakyReLU(alpha=0.01)) 

    model.add(            
        Conv2D(64,
               kernel_size=3,
               strides=2,
               input_shape=img_shape,
               padding='same'))

    model.add(BatchNormalization())    

    model.add(LeakyReLU(alpha=0.01))     

    model.add(                 
        Conv2D(128,
               kernel_size=3,
               strides=2,
               input_shape=img_shape,
               padding='same'))

    model.add(BatchNormalization())    

    model.add(LeakyReLU(alpha=0.01))      

    model.add(Flatten())                      
    model.add(Dense(1, activation='sigmoid'))

    return model

def build_cgan_discriminator(img_shape):

    img = Input(shape=img_shape)        

    label = Input(shape=(1, ), dtype='int32')     

Listing 8.4 CGAN Discriminator 
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    label_embedding = Embedding(num_classes,     
                                np.prod(img_shape),
                                input_length=1)(label)

    label_embedding = Flatten()(label_embedding)    

    label_embedding = Reshape(img_shape)(label_embedding)   

    concatenated = Concatenate(axis=-1)([img, label_embedding]) 

    discriminator = build_discriminator(img_shape)

    classification = discriminator(concatenated)   

    return Model([img, label], classification)

8.3.5 Building the model

Next, we build and compile the CGAN Discriminator and Generator models, as shown
in the following listing. Notice that in the combined model used to train the Genera-
tor, the same input label is passed to the Generator (to generate a sample) and to the
Discriminator (to make a prediction).

def build_cgan(generator, discriminator):

    z = Input(shape=(z_dim, ))    

    label = Input(shape=(1, ))     

    img = generator([z, label])      

    classification = discriminator([img, label])

    model = Model([z, label], classification)   

    return model

discriminator = build_cgan_discriminator(img_shape)   
discriminator.compile(loss='binary_crossentropy',
                      optimizer=Adam(),
                      metrics=['accuracy'])

generator = build_cgan_generator(z_dim)   

discriminator.trainable = False          

cgan = build_cgan(generator, discriminator)       
cgan.compile(loss='binary_crossentropy', optimizer=Adam())

Listing 8.5 Building and compiling the CGAN model
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fak
8.3.6 Training

For the CGAN training algorithm, the details of each training iteration are as follows.

The following listing implements this CGAN training algorithm.

accuracies = []
losses = []

def train(iterations, batch_size, sample_interval):

    (X_train, y_train), (_, _) = mnist.load_data()     

    X_train = X_train / 127.5 - 1.                
    X_train = np.expand_dims(X_train, axis=3)

    real = np.ones((batch_size, 1))   

    fake = np.zeros((batch_size, 1))    

    for iteration in range(iterations):
                                         

        idx = np.random.randint(0, X_train.shape[0], batch_size)   
        imgs, labels = X_train[idx], y_train[idx]

CGAN training algorithm 
For each training iteration do

1 Train the Discriminator:

a Take a random mini-batch of real examples and their labels (x, y).
b Compute D((x, y)) for the mini-batch and backpropagate the binary classifi-

cation loss to update  (D) to minimize the loss.
c Take a mini-batch of random noise vectors and class labels (z, y) and gen-

erate a mini-batch of fake examples: G(z, y) = x*|y.
d Compute D(x*|y, y) for the mini-batch and backpropagate the binary classi-

fication loss to update  (D) to minimize the loss.

2 Train the Generator:

a Take a mini-batch of random noise vectors and class labels (z, y) and gen-
erate a mini-batch of fake examples: G(z, y) = x*|y.

b Compute D(x*|y, y) for the given mini-batch and backpropagate the binary
classification loss to update  (G) to maximize the loss.

End for

Listing 8.6 CGAN training loop
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im
values
        z = np.random.normal(0, 1, (batch_size, z_dim))    
        gen_imgs = generator.predict([z, labels])

        d_loss_real = discriminator.train_on_batch([imgs, labels], real) 
        d_loss_fake = discriminator.train_on_batch([gen_imgs, labels], fake)
        d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)

        z = np.random.normal(0, 1, (batch_size, z_dim))   

        labels = np.random.randint(0, num_classes, batch_size).reshape(-1, 1)

        g_loss = cgan.train_on_batch([z, labels], real)   

        if (iteration + 1) % sample_interval == 0:

            print("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" %     
                  (iteration + 1, d_loss[0], 100 * d_loss[1], g_loss))

            losses.append((d_loss[0], g_loss))   
            accuracies.append(100 * d_loss[1])

            sample_images()    

8.3.7 Outputting sample images

You may recognize the next function from chapters 3 and 4. We used it to examine how
the quality of the Generator-produced images improved as the training progressed. The
function in listing 8.7 is indeed similar, but a few crucial differences exist.

 First, instead of a 4 × 4 grid of random handwritten digits, we are generating a 2 × 5
grid of numbers, 1 through 5 in the first row, and 6 through 9 in the second row.
This allows us to inspect how well the CGAN Generator is learning to produce spe-
cific numerals. Second, we are displaying the label for each example by using the
set_title() method.

def sample_images(image_grid_rows=2, image_grid_columns=5):

    z = np.random.normal(0, 1, (image_grid_rows * image_grid_columns, z_dim))

    labels = np.arange(0, 10).reshape(-1, 1)    

    gen_imgs = generator.predict([z, labels])     

    gen_imgs = 0.5 * gen_imgs + 0.5     

    fig, axs = plt.subplots(image_grid_rows,      
                            image_grid_columns,
                            figsize=(10, 4),
                            sharey=True,
                            sharex=True)

Listing 8.7 Displaying generated images
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    cnt = 0
    for i in range(image_grid_rows):
        for j in range(image_grid_columns):
            axs[i, j].imshow(gen_imgs[cnt, :, :, 0], cmap='gray')   
            axs[i, j].axis('off')
            axs[i, j].set_title("Digit: %d" % labels[cnt])
            cnt += 1

Figure 8.6 shows sample output from this function and illustrates the improvement to
the CGAN-produced numerals over the course of training.

Outputs
a grid of

images

Figure 8.6 Starting from random noise, 
GCAN learns to produce realistic-looking 
numerals for each of the labels in the 
training dataset.
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8.3.8 Training the model

And finally, let’s run the model we just implemented:

iterations = 12000       
batch_size = 32
sample_interval = 1000

train(iterations, batch_size, sample_interval)    

8.3.9 Inspecting the output: Targeted data generation

Figure 8.7 shows the images of digits produced by the CGAN Generator after it is fully
trained. At each row, we instruct the Generator to synthesize a different numeral,
from 0 to 9. Notice that each numeral is rendered in a different writing style, attesting

Sets 
hyperparameters Trains the CGAN for 

the specified number 
of iterations

Figure 8.7 Each row shows a sample 
of images produced to match a given 
numeral, 0 through 9. As you can see, 
the CGAN Generator has successfully 
learned to produce every class 
represented in our dataset.
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to CGAN’s ability not only to learn to produce examples matching every label in the
training dataset, but also to capture the full diversity of the training data.

8.4 Conclusion
In this chapter, you saw how labels could be used to guide the training of the Genera-
tor and the Discriminator to teach a GAN to produce fake examples of our choice.
Along with the DCGAN, CGAN is one of the most influential early GAN variants that
has inspired countless new research directions.

 Perhaps the most impactful and promising of these is the use of conditional adver-
sarial networks as a general-purpose solution to image-to-image translation problems.
This is a class of problems that seeks to translate images from one modality into
another. Applications of image-to-image translation range from colorizing black-and-
white photos to turning a daytime scene into nighttime and synthesizing a satellite
view from a map view.

 One of the most successful early implementations based on the Conditional GAN
paradigm is pix2pix, which uses pairs of images (one as the input and the other as the
label) to learn to translate from one domain into another. Recall that, in theory as
well as in practice, the conditioning information used to train a CGAN can be much
more than just labels to provide for more complex use cases and scenarios. For exam-
ple, for colorization tasks, an image pair would be a black-and-white photo (the input)
and a colored version of the same photo (the label). You will see these illustrated in
the following chapter.

 We do not cover pix2pix in detail because only about a year after its publication, it
was eclipsed by another GAN variant that not only outperformed pix2pix’s perfor-
mance on image-to-image translation tasks but also accomplished it without the need
for paired images. The Cycle-Consistent Adversarial Network (or CycleGAN, as the
technique came to be known) needs only two groups of images representing the two
domains (for example, a group of black-and-white photos and a group of colored pho-
tos). You will learn all about this remarkable GAN variant in the following chapter.

Summary
 Conditional GAN (CGAN) is a GAN variant in which both the Generator and

the Discriminator are conditioned on auxiliary data such as a class label during
training.

 The additional information constrains the Generator to synthesize a certain
type of output and the Discriminator to accept only real examples matching the
given additional information. 

 As a tutorial, we implemented a CGAN that generates realistic handwritten dig-
its of our choice by using MNIST class labels as our conditioning information.

 Embedding maps an integer into a dense vector of the desired size. We used
embedding to create a joint hidden representation from a random noise vector
and a label (for CGAN Generator training) and from an input image and a label
(for CGAN Discriminator training).



CycleGAN
Finally, a technological breakthrough of almost universal appeal, seeing as every-
one seems to love comparing apples to oranges. In this chapter, you will learn how!
But this is no small feat, so we will need at least two sets of Discriminators and two
Generators to achieve this. That obviously complicates the architecture, so we will
have to spend more time discussing it, but at the very least, it is a great point to start
thinking in a fully object-oriented programming (OOP) way.

This chapter covers
 Expanding on the idea of Conditional GANs by 

conditioning on an entire image

 Exploring one of the most powerful and complex 
GAN architectures: CycleGAN

 Presenting an object-oriented design of GANs and 
the architecture of its four main components

 Implementing a CycleGAN to run a conversion of 
apples to oranges
143
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9.1 Image-to-image translation
One fascinating area of GANs’ application that we touched on at the end of the previ-
ous chapter is image-to-image translation. In this use, GANs have been massively success-
ful—in video, static images, or even style transfer. Indeed, GANs have been at the
forefront of many of these applications as they enable almost a new class of uses.
Because of their visual nature, the more successful GAN variants typically make their
rounds on YouTube and Twitter, so if you have not seen these videos, we encourage
you to check them out by searching for pix2pix, CycleGAN, or vid2vid.

 This type of translation in practice means that our input to the Generator is a pic-
ture, because we need our Generator (translator) to start from this image. In other
words, we are mapping an image from one domain to another. Previously, the latent
vector seeding the generation was typically a somewhat uninterpretable vector. Now
we are swapping that for an input image. 

 A good way to think of image-to-image translation is as a special case of the Condi-
tional GAN. However, in this case, we are conditioning on a complete image (rather
than just a class)—typically of the same dimensionality as the output image—that is
then provided to the network as a kind of a label (presented in chapter 8). One of
the first famous examples in this space was an image-translation work coming out of the
University of California, Berkeley, as shown in figure 9.1.

As you can see, we can map from any of the following:

 From semantic labels (for example, drawing blue where a car should be and
purple where a road should be) to photorealistic images of streets

 From satellite images to a view like the one in Google Maps
 From day images to night images

Input Output

Input Output Input Output Input Output

Input Output Input Output
Aerial to map

Day to night Edges to photo

Figure 9.1 Conditional GANs provide a powerful framework for image translation that performs well across 
many domains. 
(Source: “Image-to-Image Translation with Conditional Adversarial Networks,” by Phillip Isola, https://github.com/phillipi/pix2pix.)

https://github.com/phillipi/pix2pix
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 From black-and-white to color
 From outlines to synthesized fashion items

The idea is clearly powerful and versatile; however, the issue lies with the need for
paired data. From chapter 8, you understand that we need labels for the Conditional
GAN. Because in this case we are using another image as a label, the mapping does
not make sense unless we’re mapping to the corresponding image—the exact same
image, except in the other domain. 

 So, the night image needs to be taken from exactly the same place as the day
image. The fashion item’s outline needs to have the exact match of a fully colored/
synthesized item in the training set in the other domain. In other words, during train-
ing, the GAN needs to have access to corresponding labels of the items in the original
domain. 

 This is typically done—for example, in the case of black-and-white images—by first
taking loads of colored pictures, applying the B&W filter on all of them, and then
using the unmodified image as one domain and the B&W-filtered images as the other.
This ensures that we have the corresponding images in both domains. Then we can
apply the trained GAN anywhere, but if we do not have an easy way of generating
these “perfect” pairs, we are out of luck!

9.2 Cycle-consistency loss: There and back aGAN
The genius insight of this UC Berkeley group was that we do not, in fact, need perfect
pairs.1 Instead, we simply complete the cycle: we translate from one domain to another
and then back again. For example, we go from summer picture (domain A) of a park
to a winter one (domain B) and then back again to summer (domain A). Now we have
essentially created a cycle, and, ideally, the original picture (a) and the reconstructed
picture ( ) are the same. If they are not, we can measure their loss on a pixel level,
thereby getting the first loss of our CycleGAN: cycle-consistency loss, which is depicted in
figure 9.2. 

 A common analogy is thinking about the process of back-translation—a sentence in
Chinese that is translated to English and then back again to Chinese should give back
the same sentence. If not, we can measure the cycle-consistency loss by how much the
first and the third sentences differ.

 To be able to use the cycle-consistency loss, we need to have two Generators: one
translating from A to B, called GAB, sometimes referred to as simply G, and then
another one translating from B to A, called GBA, referred to as F for brevity. There are
technically two losses—forward cycle-consistency loss and backward cycle-consistency
loss—but because all they mean is that  as well as , you
may think of these as essentially the same, but off by one.

1 See “Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks,” by Jun-Yan Zhu et
al., 2017, https://arxiv.org/pdf/1703.10593.pdf.

â

â F G a  = a b̂ G F b  = b

https://arxiv.org/pdf/1703.10593.pdf
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9.3 Adversarial loss
In addition to the cycle-consistency loss, we still have the adversarial loss. Every transla-
tion with a Generator GAB has a corresponding Discriminator DB, and GBA has Dis-
criminator DA. The way to think about it is that we are always testing, when translating
to domain A, whether the picture looks real; hence we use DA and vice versa.

 This is the same idea as with simpler architectures, but now, because of the two
losses, we have two Discriminators. We need to make sure that not only the translation
from apple to orange looks real, but also that the translation from our estimated
orange back to reconstructed apple looks real. Recall that the adversarial loss ensures
that the images look real, and as a result, it is still key for the CycleGAN to work.
Hence adversarial loss is presented as second. The first Discriminator in the cycle is
especially important—otherwise, we’d simply get noise that would help the GAN
memorize what it should reconstruct.2 

9.4 Identity loss
The idea of identity loss is simple: we want to enforce that CycleGAN preserves the over-
all color structure (or temperature) of the picture. So we introduce a regularization
term that helps us keep the tint of the picture consistent with the original image.
Imagine this as a way of ensuring that even after applying many filters onto your
image, you still can recover the original image.

 This is done by feeding the images already in domain A to the Generator from B to
A (GBA), because the CycleGAN should understand that they are already in the cor-
rect domain. In other words, we penalize unnecessary changes to the image: if we feed
in a zebra and are trying to “zebrafy” an image, we get the same zebra back, as there is
nothing to do.3 Figure 9.3 illustrates the effects of identity loss.

2 In practice, this is a little bit more complicated and would depend on, for example, whether you include both
forward and backward cyclical loss. But you may use this as a mental model for how to think of the importance
of the adversarial loss—remembering that we have both mappings A-B-A and B-A-B, so both Discriminators
get to be the first one at some point.

3 Jun Yan Zhu et al., 2017, https://arxiv.org/pdf/1703.10593.pdf. More at http://mng.bz/loE8.
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Figure 9.2 Because the loss works both ways, we can now reproduce not just images from summer to winter, 
but also from winter to summer. If G is our Generator from A to B, and F is our Generator from B to A, then 

. 
(Source: Jun-Yan Zhu et al., 2017, https://arxiv.org/pdf/1703.10593.pdf.
â F G a  = a

https://arxiv.org/pdf/1703.10593.pdf
https://shortener.manning.com/loE8
https://arxiv.org/pdf/1703.10593.pdf
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Even though identity loss is not, strictly speaking, required for the CycleGAN to work, we
include it for completeness. Both our implementation and the CycleGAN authors’ latest
implementation contain it, because frequently this adjustment leads to empirically better
results and enforces a constraint that seems reasonable. But even the CycleGAN paper
itself mentions it only briefly as a seeming ex-post justification, so we do not cover it
extensively.

 Table 9.1 summarizes the losses you’ve learned about in this chapter.

Table 9.1 Losses

Calculation Measures Ensures

Adversarial loss LGAN(G,DB,B,A)
= Eb~p(b)[logDB(b)]
+ Ea~p(a)[log(1-DB(GAB(a))]

(This is just the good old 
NS-GAN presented in 
chapter 5.)

As in previous cases, the 
loss measures two terms: 
first is the likelihood of a 
given image being the 
real one rather than the 
translated image. Second 
is the part where the 
Generator may get to fool 
the Discriminator. Note 
that this formulation is 
only for DB, with equivalent 
DA that comes into the 
final loss.

That the translated 
images look real, sharp, 
and indistinguishable 
from the real ones.

Input Without identity loss With identity loss

Figure 9.3 A picture is worth a thousand words to clarify the effects of identity loss: there is a clear tint in the 
cases without identity loss, and since there seems to be no reason for it, so we try to penalize this behavior. Even 
in black and white, you should be able to see the difference. However, to see the full extent of it, check out the 
full-color version online.



148 CHAPTER 9 CycleGAN
9.5 Architecture
The CycleGAN setup builds directly on the CGAN architecture and is, in essence, two
CGANs joined together—or, as the CycleGAN authors themselves point out, an auto-
encoder. Recall from chapter 2 that we had an input image x and the reconstructed
image x*, which was the result of reconstruction after being fed through the latent
space z; see figure 9.4.

 To translate this diagram into the CycleGAN’s world, a is an image in the A
domain, b is an image in B, and  is reconstructed A. In CycleGAN’s case, however,
we are dealing with a latent space—step 2—of equal dimensionality. It just happens
to be another meaningful domain (B) that the CycleGAN has to find. Even with the
autoencoder, the latent space was just another domain, though it was not as easily
interpretable.

 Compared to what we know from chapter 2, the main new concept is the introduc-
tion of the adversarial losses. These and many other mixtures of autoencoders and
GANs are an active area of research in themselves! So that is also a good area for inter-
ested researchers. But for now, think of the two mappings as two autoencoders: F(G(a))

Cycle-consis-
tency loss: 
forward pass

Difference between  and 

 (denoted by a)

The difference between the 
images from the original 
domain  and the twice-
translated images .

That the original image 
and the twice-translated 
image are the same. If this 
fails, we may not have a 
coherent mapping A-B-A.

Cycle-consis-
tency loss: 
backward pass

The difference between the 
images from the original 
domain  and the twice-
translated images .

That the original image 
and the twice-translated 
image are the same. If 
this fails, we may not 
have a coherent mapping 
B-A-B.

Overall loss L = LGAN(G,DB,A,B)
+ LGAN(F,DA,B,A)
+ Lcyc(G,F)

All of the four losses com-
bined (2× adversarial 
because of two Genera-
tors) plus cyclical loss: for-
ward and backward in one 
term.

That the overall transla-
tion is photorealistic and 
makes sense (provides 
matching pictures).

Identity loss
(outside the over-
all loss, for con-
sistency with the 
CycleGAN paper 
notation)

Lidentity =
= Ea~p(a)[GBA(a) – a ]
+ Eb~p(b)[GAB(b) – b ]

The difference between the 
image in B and GAB(b) and 
vice versa.

That the CycleGAN 
changes parts of the 
image only when it 
needs to.

a. This notation may be unfamiliar to some, but it represents the L1 norm between the two items. For simplicity, you may 
think of this as for each pixel, an absolute difference between it and the corresponding pixel on the reconstructed image.

Table 9.1 Losses (continued)

Calculation Measures Ensures

a

â â a– 1 a
â

b̂ b– 1

b
b̂

â



149Architecture
and G(F(b)). We take the basic idea of the autoencoder—including a kind of explicit
loss function as substituted by the cycle-consistency loss—and add Discriminators to it.
The two Discriminators, one at each step, ensure that both translations (including
into the kind of latent space) look like real images in their respective domains.

9.5.1 CycleGAN architecture: building the network

Before we jump into the actual implementation of the CycleGAN, let’s briefly look at
the overall simplified implementation depicted in figure 9.5. There are two flows: in
the top diagram, the flow A-B-A starts from an image in domain A, and in the bottom
diagram, the flow B-A-B starts with an image in domain B. 

 The image then follows two paths: it is (1) fed to the Discriminator to get our deci-
sion as to whether it is real or not, and (2) (i) fed to the Generator to translate it to B,
then (ii) evaluated by the Discriminator B to see if it looks real in domain B, and even-
tually (iii) translated back to A to allow us to measure the cyclic loss.

 The bottom image is basically an off-by-one cycle of the top image and follows all the
same fundamental steps. We’ll use the apple2orange dataset, but many other datasets
are available, including the famous horse2zebra dataset, which you can easily use by
making a slight modification to the code and downloading the data by using the bash
script provided. 

 To summarize figure 9.5 in another representation for further clarity, table 9.2
reviews all four major networks.

Image b in
domain B
(step 2)

“Reconstruction”
network or
generator
from B to A

(step 3)

Encoder
or generator
from A to B

(step 1)

Image a in
reconstructed

domain A

Image a in
domain X

X b a

ˆ
ˆˆ

Figure 9.4 In this image of an autoencoder from chapter 2, we used the 
analogy of compressing (step 1) a human concept into a more compact written 
form in a letter (step 2) and then expanding this concept out to the (imperfect) 
idea of the same notion in someone else’s head (step 3).
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Table 9.2 Networks

Input Output Goal

Generator:
from A to B

We load either a real picture from 
A or a translation from B to A.

We translate it to 
domain B.

Try to create realistic-look-
ing images in domain B.

Generator:
from B to A

We load either a real picture from 
B or a translation from A to B.

We translate it to 
domain A.

Try to create realistic-look-
ing images in domain A.

Discriminator A We provide a picture in the A 
domain—either translated or real. 

The probability that 
the picture is real.

Try to not get fooled by the 
Generator from B to A.

Discriminator B We provide a picture in the B 
domain—either translated or real. 

The probability that 
the picture is real.

Try to not get fooled by the 
Generator from A to B.

Discriminator A

Original

Reconstructed

Translated

Input_A

Generator GAB

Generator GBA

Decision [0, 1] Discriminator B

Decision [0, 1]

Discriminator B

Decision [0, 1]

Original

Input_B

Generator GBA

Generator GAB

Reconstructed

Translated

Discriminator A

Decision [0, 1]

Figure 9.5 In this simplified architecture of the CycleGAN, we start with the input image, which either (1) 
goes to the Discriminator for evaluation or (2) is translated to one domain, evaluated by the other 
Discriminator, and then translated back. 
(Source: “Understanding and Implementing CycleGAN in TensorFlow,” by Hardik Bansal and Archit Rathore, 2017, 
https://hardikbansal.github.io/CycleGANBlog/.)

https://hardikbansal.github.io/CycleGANBlog/
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9.5.2 Generator architecture

Figure 9.6 shows the architecture of the Generator. We have re-created the diagram by
using the variable names from our code and included the shapes for your benefit.
This is an example of a U-Net architecture, because when you draw it in a way that each
resolution gets its own level, the network looks like a U.

A couple of things to note here:

 We are using standard convolutional layers in the encoder. 
 From those, we create skip connections so that the information has an easier time

propagating through the network. In the figure, this is denoted by the outlines
and color-coding between the d0 to d3 and u1 to u4, respectively. You can see
that half of the blocks in the decoder are coming from those skip connections
(notice double the number of feature maps!).4

 The decoder uses deconvolutional layers with one final convolutional layer to
upscale the image into the equivalent size of the original image.

The autoencoder is a useful teaching tool for the architecture of the Generator alone
as well, because the Generator has an encoder-decoder architecture:

 Encoder—Step 1 from figure 9.4: these are the convolutional layers that reduce
the resolution of each feature map (layer or slice). This is the contraction path
(d0 to d3).

 Decoder—Step 3 from figure 9.4: these are the deconvolutional layers (transposed
convolutions) that upscale the image back to 128 × 128. This is the expansion
path (u1 to u4).

4 As you will see, this just means we concatenate the entire block/tensor to the equivalently colored tensor in
the decoder part of the Generator.

D0

D1

64 × 64 × 32

128 × 128 × 3 128 × 128 × 64 128 × 128 × 3

64 × 64 × 64

32 × 32 × 64 Residual connection

Residual connection

Residual connection

32 × 32 × 128

16 × 16 × 128 16 × 16 × 2568 × 8 × 256

D2 D3 U1
U2

U3

output_img

D4

U4

Figure 9.6 Architecture of the Generator. The generator itself has a contraction path (d0 to d3) and expanding 
path (u1 to u4). The contraction and expanding paths are sometimes referred to as encoder and decoder, 
respectively.
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To clarify, the autoencoder model here is useful in two ways. First, the overall Cycle-
GAN architecture can be viewed as training two autoencoders.5 Second, the U-Net
itself has parts referred to as encoder and decoder.

 You may also be a bit puzzled by the downscaling and the subsequent upscaling,
but this is just so that we compress the image to the most meaningful representation,
but at the same time are able to add back all the detail. It’s the same reasoning as with
the autoencoder, except now we also have a path to remember the nuances. This
architecture—the U-Net architecture—has just been empirically shown in several domains
as better performing on various segmentation tasks. The key idea is that although
during downsampling we can focus on classification and understanding of large
regions, including higher-resolution skip connections preserves the detail that can
then be accurately segmented.

 In our implementation of CycleGAN, we’ll use the U-Net architecture with skip
connections as shown in figure 9.6, which is more readable. However, many CycleGAN
implementations use the ResNet architecture, which you can implement yourself with
a bit more work.

NOTE The main advantage of ResNet is that it uses fewer parameters and
introduces a step in the middle called transformer, which has residual connec-
tions in lieu of our encoder-decoder skip connections.

Based on our testing, at least on the dataset used, the apple2orange results remain the
same. Instead of explicitly defining the transformer, we provide skip connections (as
used in the diagram) from the convolutional to the deconvolutional layers. We will
mention these similarities again in code. For now, just remember that.

9.5.3 Discriminator architecture

The CycleGAN’s Discriminator is based on the PatchGAN architecture—we will dive
into the technical details in the code section. One thing that may be confusing is that
we do not get a single float as an output of this Discriminator, but rather a set of sin-
gle-channel values that may be thought of as a set of mini-discriminators that we then
average together.

 Ultimately, this allows the design of the CycleGAN to be fully convolutional, mean-
ing that it can scale relatively easily to higher resolutions. Indeed, in the examples of
translating video games to reality or vice versa, the CycleGAN authors have used an
upscaled version of the CycleGAN, with only minor modifications thanks to the fully
convolutional design. Other than that, the Discriminator should be a relatively
straightforward implementation of the Discriminators you have seen before, except
there are now two of them.

5 See Jun-Yan Zhu et al., 2017, https://arxiv.org/pdf/1703.10593.pdf.

https://arxiv.org/pdf/1703.10593.pdf
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9.6 Object-oriented design of GANs
We have always used objects in TensorFlow and object-oriented programming (OOP)
in our code, but we have usually treated the architectures more functionally, because
they were generally simple. In the CycleGAN’s case, the architecture is complex, and
as a result, we need a structure that allows us to keep accessing the original attri-
butes and methods that we have defined. As a result, we will write out the CycleGAN
as a Python class of its own with methods to build the Generator and Discriminator,
and run the training.

9.7 Tutorial: CycleGAN
In this tutorial, we’ll use the Keras-GAN implementation and use Keras with a Tensor-
Flow backend.6 Tested as late as Keras 2.2.4 and TensorFlow 1.12.0, Keras_contrib
was installed from the hash 46fcdb9384b3bc9399c651b2b43640aa54098e64. This
time, we have to use a different dataset (also to show you that despite our joke from
chapter 2, we do know other datasets). But for educational purposes, we will keep using
one of the simpler datasets—apple2orange. Let’s jump right into it by doing all our
usual imports, as shown in the following listing.

from __future__ import print_function, division
import scipy
from keras.datasets import mnist
from keras_contrib.layers.normalization import InstanceNormalization
from keras.layers import Input, Dense, Reshape, Flatten, Dropout, Concatenate
from keras.layers import BatchNormalization, Activation, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
import datetime
import matplotlib.pyplot as plt
import sys
from data_loader import DataLoader
import numpy as np
import os

As promised, we’ll use the object-oriented style of programming. In the following list-
ing, we create a CycleGAN class with all the initializing parameters, including the data
loader. The data loader is defined in the GitHub repository for our book. It simply
loads the preprocessed data.

 
 
 

6 See the Keras-GAN GitHub repository by Erik Linder-Norén, 2017, https://github.com/eriklindernoren/
Keras-GAN.

Listing 9.1 Import all the things

https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
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f

class CycleGAN():
    def __init__(self):
        self.img_rows = 128    
        self.img_cols = 128    
        self.channels = 3      
        self.img_shape = (self.img_rows, self.img_cols, self.channels)

        self.dataset_name = 'apple2orange'     
        self.data_loader = DataLoader(dataset_name=self.dataset_name,  
                                      img_res=(self.img_rows, self.img_cols))

        patch = int(self.img_rows / 2**4)    
        self.disc_patch = (patch, patch, 1)

        self.gf = 32             
        self.df = 64               
                               
        self.lambda_cycle = 10.0          
        self.lambda_id = 0.9 * self.lambda_cycle    

        optimizer = Adam(0.0002, 0.5)

Two new terms are lambda_cycle and lambda_id. The second hyperparameter influ-
ences identity loss. The CycleGAN authors themselves note that this value influences
how dramatic the changes are—especially early in the training process.7 Setting a
lower value leads to unnecessary changes: for example, completely inverting the col-
ors early on. We have selected this value, based on rerunning the training process for
apple2orange several times. Frequently, the process is theory-driven alchemy. 

 The first hyperparameter—lambda_cycle—controls how strictly the cycle-consistency
loss is enforced. Setting this value higher will ensure that your original and recon-
structed images are as close together as possible. 

9.7.1 Building the network

So now that we have our basic parameters out of the way, we will build the basic net-
work, as shown in listing 9.3. We will start from the high-level view and move down.
This entails the following: 

1 Creating the two Discriminators DA and DB and compiling them
2 Creating the two Generators:

a Instantiating GAB and GBA 
b Creating placeholders for the image input for both directions
c Linking them both to an image in the other domain

Listing 9.2 Starting the CycleGAN class

7 See “pytorch-CycleGAN-and-pix2pix Frequently Asked Questions,” by Jun-Yan Zhu, April 2019, http://mng
.bz/BY58.

Input shape

Configures
data loader

Uses the
DataLoader

object to
import a

preprocessed
dataset

Calculates output 
shape of D (PatchGAN)

Number of
filters in the

irst layer of G

Number of
filters in the

first layer of D

Cycle-consistency 
loss weight

Identity loss weight

https://shortener.manning.com/BY58
https://shortener.manning.com/BY58
https://shortener.manning.com/BY58
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d Creating placeholders for the reconstructed images back in the original
domain

e Creating the identity loss constraint for both directions 
f Not making the parameters of the Discriminators trainable for now
g Compiling the two Generators

        self.d_A = self.build_discriminator()    
        self.d_B = self.build_discriminator()    
        self.d_A.compile(loss='mse',             
                         optimizer=optimizer,    
                         metrics=['accuracy'])   
        self.d_B.compile(loss='mse',             
                         optimizer=optimizer,    
                         metrics=['accuracy'])   

        self.g_AB = self.build_generator()     
        self.g_BA = self.build_generator()     

        img_A = Input(shape=self.img_shape)   
        img_B = Input(shape=self.img_shape)    

        fake_B = self.g_AB(img_A)         
        fake_A = self.g_BA(img_B)
        reconstr_A = self.g_BA(fake_B)  
        reconstr_B = self.g_AB(fake_A)
        img_A_id = self.g_BA(img_A)     
        img_B_id = self.g_AB(img_B)

        self.d_A.trainable = False    
        self.d_B.trainable = False

        valid_A = self.d_A(fake_A)     
        valid_B = self.d_B(fake_B)

        self.combined = Model(inputs=[img_A, img_B],            
                              outputs=[valid_A, valid_B,        
                                       reconstr_A, reconstr_B,  
                                       img_A_id, img_B_id])     
        self.combined.compile(loss=['mse', 'mse',               
                                    'mae', 'mae',               
                                    'mae', 'mae'],              
                              loss_weights=[1, 1,
                                            self.lambda_cycle, self.lambda_cycle,
                                            self.lambda_id, self.lambda_id],
                              optimizer=optimizer)

One last thing to clarify from the preceding code: the outputs from the combined model
come in lists of six. This is because we always get validities (from the Discriminator),

Listing 9.3 Building the networks

Builds and 
compiles the 
Discriminators

Beginning here, we construct the 
computational graph of the Generators. 
These first two lines build the Generators.

Inputs images from 
both domains

Translates images to 
the other domain

Translates images back 
to original domain

Identity mapping 
of images

For the combined 
model, we will train 
only the Generators.

Discriminators
determine
validity of
translated

images Combined model 
trains Generators to 
fool Discriminators
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reconstruction, and identity losses—one for A-B-A and one for the B-A-B cycle—hence
six. The first two are squared errors, and the rest are mean absolute errors. The rela-
tive weights are influenced by the lambda factors described earlier.

9.7.2 Building the Generator 

Next, we build the Generator code in listing 9.4, which uses the skip connections as we
described in section 9.5.2. This is the U-Net architecture. This architecture is simpler
to write than the ResNet architecture, which some implementations use. Within our
Generator function we first define the helper functions: 

1 Define the conv2d() function as follows: 

a Standard 2D convolutional layer 
b Leaky ReLU activation 
c Instance normalization8

2 Define the deconv2d() function as a transposed9 convolution (aka deconvolution)
layer that does the following:

a Upsamples the input_layer 
b Possibly applies dropout if we set the dropout rate
c Always applies InstanceNormalization
d More importantly, creates a skip connection between its output layer and

the layer of corresponding dimensionality from the downsampling part
from figure 9.4

NOTE In step 2d, we’re using a simple UpSampling2D, which is not a learned
parameter, but rather uses the nearest neighbors interpolation.

Then we create the actual Generator:

3 Take the input (128 × 128 × 3) and assign that to d0.
4 Run that through a convolutional layer d1, arriving at a 64 × 64 × 32 layer.
5 Take d1 (64 × 64 × 32) and apply conv2d to get 32 ×32 × 64 (d2).
6 Take d2 (32 × 32 × 64) and apply conv2d to get 16 × 16 × 128 (d3).
7 Take d3 (16 × 16 × 128) and apply conv2d to get 8 × 8 × 256 (d4).
8 u1: Upsample d4 and create a skip connection between d3 and u1.
9 u2: Upsample u1 and create a skip connection between d2 and u2.

10 u3: Upsample u2 and create a skip connection between d1 and u3.
11 u4: Use regular upsampling to arrive at a 128 × 128 × 64 image.

8 Instance normalization is similar to the batch normalization in chapter 4, except that instead of normalizing
based on information from the entire batch, we normalize each feature map within each channel separately.
Instance normalization often results in better-quality images for tasks such as style transfer or image-to-image
translation—just what we need for the CycleGAN!

9 Here, transposed convolution is—some argue—a more correct term. However, just think of it as the opposite of
convolution, or deconvolution.
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12 Use a regular 2D convolution to get rid of the extra feature maps and get only
128 × 128 × 3 (height × width × color_channels)

    def build_generator(self):
        """U-Net Generator"""

        def conv2d(layer_input, filters, f_size=4):
            """Layers used during downsampling"""
            d = Conv2D(filters, kernel_size=f_size,
                       strides=2, padding='same')(layer_input)
            d = LeakyReLU(alpha=0.2)(d)
            d = InstanceNormalization()(d)
            return d

        def deconv2d(layer_input, skip_input, filters, f_size=4, 
            dropout_rate=0):
            """Layers used during upsampling"""
            u = UpSampling2D(size=2)(layer_input)
            u = Conv2D(filters, kernel_size=f_size, strides=1,
                       padding='same', activation='relu')(u)
            if dropout_rate:
                u = Dropout(dropout_rate)(u)
            u = InstanceNormalization()(u)
            u = Concatenate()([u, skip_input])
            return u

        d0 = Input(shape=self.img_shape)    

        d1 = conv2d(d0, self.gf)    
        d2 = conv2d(d1, self.gf * 2)
        d3 = conv2d(d2, self.gf * 4)
        d4 = conv2d(d3, self.gf * 8)

        u1 = deconv2d(d4, d3, self.gf * 4)    
        u2 = deconv2d(u1, d2, self.gf * 2)    
        u3 = deconv2d(u2, d1, self.gf)        

        u4 = UpSampling2D(size=2)(u3)
        output_img = Conv2D(self.channels, kernel_size=4,
                            strides=1, padding='same', activation='tanh')(u4)

        return Model(d0, output_img) 

9.7.3 Building the Discriminator

Now for the Discriminator method, which uses a helper function that creates layers
formed of 2D convolutions, LeakyReLU, and optionally, InstanceNormalization.

 We apply these layers the following way, as shown in listing 9.5:

1 We take the input image (128 × 128 × 3) and assign that to d1 (64 × 64 × 64).
2 We take d1 (64 × 64 × 64) and assign that to d2 (32 × 32 × 128).

Listing 9.4 Building the generator

Image input

Downsampling

Upsampling
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3 We take d2 (32 × 32 × 128) and assign that to d3 (16 × 16 × 256).
4 We take d3 (16 × 16 × 256) and assign that to d4 (8 × 8 × 512).
5 We take d4 (8 × 8 × 512) and flatten by conv2d to 8 × 8 × 1.

def build_discriminator(self):

        def d_layer(layer_input, filters, f_size=4, normalization=True):
            """Discriminator layer"""
            d = Conv2D(filters, kernel_size=f_size,
                       strides=2, padding='same')(layer_input)
            d = LeakyReLU(alpha=0.2)(d)
            if normalization:
                d = InstanceNormalization()(d)
            return d

        img = Input(shape=self.img_shape)

        d1 = d_layer(img, self.df, normalization=False)
        d2 = d_layer(d1, self.df * 2)
        d3 = d_layer(d2, self.df * 4)
        d4 = d_layer(d3, self.df * 8)

        validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(d4)
 
        return Model(img, validity)

9.7.4 Training the CycleGAN

With all networks written, now we will implement the method that creates our training
loop. For the CycleGAN training algorithm, the details of each training iteration are
as follows.

Listing 9.5 Building the Discriminator

CycleGAN training algorithm
For each training iteration do

1 Train the Discriminator:
a Take a mini-batch of random images from each domain (imgsA and imgsB).
b Use the Generator GAB to translate imgsA to domain B and vice versa with

GBA.
c Compute DA(imgsA, 1) and DA(GBA(imgsB), 0) to get the losses for real

images in A and translated images from B, respectively. Then add these
two losses together. The 1 and 0 in DA serve as labels.

d Compute DB(imgsB, 1) and DB(GAB(imgsA), 0) to get the losses for real
images in B and translated images from A, respectively. Then add these
two losses together. The 1 and 0 in DB serve as labels.

e Add the losses from steps c and d together to get a total Discriminator loss.
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The following listing implements this CycleGAN training algorithm.

    def train(self, epochs, batch_size=1, sample_interval=50):

        start_time = datetime.datetime.now()

        valid = np.ones((batch_size,) + self.disc_patch)   
        fake = np.zeros((batch_size,) + self.disc_patch)

        for epoch in range(epochs):
            for batch_i, (imgs_A, imgs_B) in enumerate(
                self.data_loader.load_batch(batch_size)):

                fake_B = self.g_AB.predict(imgs_A)  
                fake_A = self.g_BA.predict(imgs_B)

                dA_loss_real = self.d_A.train_on_batch(imgs_A, valid)   
                dA_loss_fake = self.d_A.train_on_batch(fake_A, fake)
                dA_loss = 0.5 * np.add(dA_loss_real, dA_loss_fake)

                dB_loss_real = self.d_B.train_on_batch(imgs_B, valid)
                dB_loss_fake = self.d_B.train_on_batch(fake_B, fake)
                dB_loss = 0.5 * np.add(dB_loss_real, dB_loss_fake)

                d_loss = 0.5 * np.add(dA_loss, dB_loss)  

2 Train the Generator:
a We use the combined model to 

– Input the images from domain A (imgsA) and B (imgsB)
– The outputs are 

1 Validity of A: DA(GBA(imgsB)) 
2 Validity of B: DB(GAB(imgsA))
3 Reconstructed A: GBA(GAB(imgsA))
4 Reconstructed B: GAB(GBA(imgsB))
5 Identity mapping of A: GBA(imgsA))
6 Identity mapping of B: GAB(imgsB))

b We then update the parameters of both Generators inline with the cycle-
consistency loss, identity loss, and adversarial loss with

– Mean squared error (MSE) for the scalars (discriminator probabilities)
– Mean absolute error (MAE) for images (either reconstructed or identity-

mapped)

End for

Listing 9.6 Training CycleGAN

Adversarial loss 
ground truths

Now we begin to train the 
Discriminators. These 
lines translate images to 
the opposite domain.

Trains the Discriminators
(original images = real /

translated = Fake)

Total
Discriminator

loss
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                g_loss = self.combined.train_on_batch([imgs_A, imgs_B],  
                                                      [valid, valid,
                                                       imgs_A, imgs_B,
                                                       imgs_A, imgs_B])
                if batch_i % sample_interval == 0:       
                    self.sample_images(epoch, batch_i)   

9.7.5 Running CycleGAN

We have written all of this complicated code and are now ready to instantiate a Cycle-
GAN object and look at some results, from the sampled images: 

gan = CycleGAN()
gan.train(epochs=100, batch_size=64, sample_interval=10)

Figure 9.7 shows some results of our hard work.

9.8 Expansions, augmentations, and applications
When you run these results, we hope you will be as impressed as we were. Because of
the absolutely astonishing results, lots of researchers flocked to improve on the tech-
nique. This section details a CycleGAN extension and then discusses some CycleGAN
applications.

Trains the
Generators

If at save interval
=> save generated

image samples This function is similar to what you
have encountered and is made

explicit in the GitHub repository.

Original Translated Reconstructed

Figure 9.7 Apples translated into oranges, and oranges into apples. These 
are results as they appear verbatim in our Jupyter notebook. (Results may 
vary slightly based on random seeds, implementation of TensorFlow and 
Keras, and hyperparameters.)
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9.8.1 Augmented CycleGAN

“Augmented CycleGAN: Learning Many-to-Many Mappings from Unpaired Data” is a
really neat extension to standard CycleGAN that injects latent space information
during both translations. Presented at ICML 2018 in Stockholm, Augmented Cycle-
GAN gives us extra variables that drive the generative process.10 In the same way that
we have used latent space in Conditional GANs’ case, we can use it in the CycleGAN
setting over and above what CycleGAN already does. 

 For example, if we have an outline of a shoe in the A domain, we can generate a
sample in the B domain, where the same type of shoe is blue. In traditional Cycle-
GAN’s case, it would always be blue. But now, with the latent variables at our disposal,
it can be orange, yellow, or whatever we choose. 

 This is also a useful framework to think about the limitations of the original Cycle-
GAN: because we are not given any extra seeding parameters (such as an extra latent
vector z), we cannot control or alter what comes out the other end. If from a particu-
lar handbag outline we get an image that is orange, it will always be orange. Aug-
mented CycleGAN gives us more control over the outcomes, as shown in figure 9.8.

9.8.2 Applications

Many CycleGAN (or CycleGAN-inspired) applications have been proposed in the
short time it has been around. They usually revolve around creating simulated virtual
environments and subsequently making them photorealistic. For example, imagine
you need more training data for a self-driving car company: just simulate it in Unity or
a GTA 5 graphics engine and then use CycleGAN to translate the data. 

 This works especially well if you need to have particular risk situations that are
expensive or time-consuming to re-create (for example, car crashes, or fire trucks
speeding to reach a destination), but you need them in your dataset. For a self-driving

10 See “Augmented Cyclic Adversarial Learning for Low Resource Domain Adaptation,” by Ehsan Hosseini-Asl,
2019, https://arxiv.org/pdf/1807.00374.pdf.
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Figure 9.8 In this information flow of the augmented CycleGAN, we have latent vectors Za and Zb 
that seed the Generator along with the image input, effectively reducing the problem to two CGANs 
joined together. This allows us to control the generation. 
(Source: “Augmented CycleGAN: Learning Many-to-Many Mappings from Unpaired Data,” by Amjad Almahairi et al., 
2018, http://arxiv.org/abs/1802.10151.)

https://arxiv.org/pdf/1807.00374.pdf
http://arxiv.org/abs/1802.10151


162 CHAPTER 9 CycleGAN
car company, this could be extremely useful to balance the dataset with at-risk situa-
tions, which are rare, but correct behavior is all the more important. 

 One example of this kind of framework is Cycle Consistent Adversarial Domain
Adaptation (CyCADA).11 Unfortunately, a full explanation of the way it works is beyond
the scope of this chapter. This is because there are many more such frameworks: some
even experiment with CycleGAN in language, music, or other forms of domain adapta-
tion. To give you a sense of the complexity, figure 9.9 shows the architecture and design
of CyCADA.

Summary
 Image-to-image translation frameworks are frequently difficult to train because

of the need for perfect pairs; the CycleGAN solves this by making this an
unpaired domain translation.

 The CycleGAN has three losses:
– Cycle-consistent, which measures the difference between the original image

and an image translated into a different domain and back again
– Adversarial, which ensures realistic images
– Identity, which preserves the color space of the image

 The two Generators use the U-Net architecture, and the two Discriminators use
the PatchGAN-based architecture.

 We implemented an object-oriented design of the CycleGAN and used it to con-
vert apples to oranges.

 Practical applications of the CycleGAN include self-driving car training and exten-
sions that allow us to create different styles of images during the translation process.

11 See “CyCADA: Cycle-Consistent Adversarial Domain Adaptation,” by Judy Hoffman et al., 2017, https://arxiv
.org/pdf/1711.03213.pdf.
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Figure 9.9 This structure should be somewhat familiar from earlier, so hopefully this chapter has at least given 
you a head start. One extra thing to point out: we now have an extra step with labels and semantic understanding 
that gives us the so-called task loss. This allows us to also check the produced image for semantic meaning.

https://arxiv.org/pdf/1711.03213.pdf
https://arxiv.org/pdf/1711.03213.pdf
https://arxiv.org/pdf/1711.03213.pdf


Part 3

Where to go from here

Part 3 explores a selection of practical use cases and other areas where you
can apply what you’ve learned about GANs and their implementations in Parts 1
and 2:

■ Chapter 10 discusses adversarial examples (means of intentionally deceiv-
ing classifiers into making mistakes), an area with great practical and the-
oretical importance.

■ Chapter 11 explores practical applications of GANs in medicine and fash-
ion, whose implementations use the GAN variants covered in this book.

■ Chapter 12 outlines the ethical considerations of GANs and their applica-
tions. We also mention emerging GAN techniques for those interested in
continuing to explore this field beyond this book.





Adversarial examples
Over the course of this book, you have come to understand GANs as an intuitive
concept. However, in 2014, GANs seemed like a massive leap of faith, especially for
those unfamiliar with the emerging field of adversarial examples, including Ian
Goodfellow’s and others’ work in this field.1 This chapter dives into adversarial
examples—specially constructed examples that make other classification algorithms
fail catastrophically. 

 We also talk about their connections to GANs and how and why adversarial learn-
ing is still largely an unsolved problem in ML—an important but rarely discussed flaw

This chapter covers
 A fascinating research area that precedes GANs 

and has an interwoven history

 Deep learning approaches in a computer vision 
setting

 Our own adversarial examples with real images 
and noise

1 See “Intriguing Properties of Neural Networks,” by Christian Szegedy et al., 2014, https://arxiv.org/
pdf/1312.6199.pdf.
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of the current approaches. That is true even though adversarial examples have an
important role to play in ML robustness, fairness, and (cyber)security. 

 There is no denying we have made substantial progress in machine learning’s
capacity to match and surpass human-level performance over the last five years—for
example, in computer vision (CV) classification tasks or the ability to play games.2

However, looking only at metrics and ROC curves3 is insufficient for us to understand
(a) why neural networks make the decisions they do (how they work) and (b) what
errors they are prone to making. This chapter touches on the first and dives into the
second. Before we begin, it should be said that although this chapter deals almost
exclusively with CV problems, adversarial examples have been identified in diverse
areas such as text or even in humans.4 

 First of all, when we speak about neural networks’ performance, we frequently read
that their error rate is lower than that of humans on the large ImageNet dataset. This
often-cited statistic—which started more as an academic joke than anything else—belies
the performance differences hidden underneath this average. While humans’ error rate
tends to be driven mostly by their inability to distinguish between different breeds of
dogs that appear prominently in this dataset, the machine learning failures are much
more ominous. Upon further investigation, adversarial examples were born.

 Unlike humans, CV algorithms struggle with problems that are very different in
nature and can be close to the training data. Because the algorithm has to make pre-
dictions for every picture possible, it has to extrapolate between the isolated and far-
apart individual instances it has seen in the training data, even if we have lots of them. 

 When we have trained networks such as Inception V3 and VGG-19, we have found
an amazing way of making image classification work on a thin manifold around the
training data. But when people tried to poke holes in the classification ability of these
algorithms, they discovered a cosmic crater—current machine learning algorithms
get easily fooled by even minor distortions. Virtually all major successful machine
learning algorithms to date suffer from this flaw to some extent, and, indeed, some
speculate that is why machine learning works at all. 

NOTE In supervised settings, think of our training set. We have a training
manifold—just a fancy word describing a high-dimensional distribution in
which our examples live. For example, our 300 × 300 pixel images live in a
270,000 dimensional space (300 × 300 × 3 colors). That makes training very
complicated.

2 What constitutes human-level performance in vision-classification tasks is a complicated topic. However, at
least in, for example, Dota 2 and Go, AI has beat human experts by a substantial margin. 

3 A receiver operating characteristic (ROC) curve explains the trade-offs between false positives and negatives. We
also encountered them in chapter 2. For more details, Wikipedia has an excellent explanation.

4 See “Adversarial Attacks on Deep Learning Models in Natural Language Processing: A Survey,” by Wei Emma
Zhang et al., 2019, http://arxiv.org/abs/1901.06796. See also “Adversarial Examples That Fool Both Com-
puter Vision and Time-Limited Humans,” by Gamaleldin F. Elsayed et al., 2018, http://arxiv.org/abs/
1802.08195.

http://arxiv.org/abs/1901.06796
http://arxiv.org/abs/1802.08195
http://arxiv.org/abs/1802.08195
http://arxiv.org/abs/1802.08195
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10.1 Context of adversarial examples
To start, we want to quickly touch on why we included this chapter toward the end of
the book:

 With adversarial examples, we are typically trying to generate new examples
that fool our existing systems to misclassify the input. We do this usually either
as evil attackers or perhaps just as researchers to see how robustly our system
will behave. Adversarial examples are about as closely a related topic to GANs as
it gets, though important differences exist.

 This will give you a sense of why GANs can be so hard to train and why our exist-
ing systems are so fragile.

 Adversarial examples allow for a different set of applications from GANs, and
we hope to give you at least the basics of their capabilities.

In terms of applications, adversarial examples are interesting for several reasons:

 As discussed, adversarial examples can be used for malicious purposes, so it is
important to test for robustness in critical systems. What if an attacker could
easily fool a facial-recognition system to gain access to your phone? 

 They help us understand machine learning fairness—which is a topic of grow-
ing importance. We can use adversarially learned representations that are use-
ful for classifications but do not allow an attacker to recover protected facts, as
probably one of the best ways of ensuring that our ML is not discriminating
against anyone.

 In a similar vein, we can use adversarial learning to protect the privacy of sensi-
tive—perhaps medical or financial—information about individuals. In this case,
we are simply focusing on information about individuals not being recoverable.

As current research stands, learning about adversarial examples is the only way to
start to understand adversarial defenses, as most papers begin with a description of
the types of attacks they defend against and only then try to solve them. At the time
of writing this book, no universal defenses work against all types of attack. But
whether this is a good reason to study them depends on your view on adversarial
examples. We decided not to cover defenses in detail—above the high-level ideas
toward the end of this chapter—because anything beyond that is beyond the scope
of this book.

10.2 Lies, damned lies, and distributions
To truly understand adversarial examples, we must come back to the domain of CV
classification tasks—partially to understand how difficult a task it is. Recall that to go
from raw pixels to ultimately being able to classify sets of images is challenging. 

 This is in part because, in order to have a truly generalizable algorithm, we have to
make sensible predictions on data nowhere near anything that we have seen in the train-
ing set. Moreover, the pixel-level differences between the image at hand and the closest
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image in the training set of the same class are large, even when we slightly change the
angle at which the picture was taken. 

 When we have our training set of 100,000 examples of 300 × 300 images in RGB
space, we have to somehow deal with 270,000 dimensions. When we consider all possi-
ble images (not the ones that we actually observe, but the ones that could happen), the
pixel value of each dimension is independent of the other dimensions, because we
can always generate a valid picture by rolling a hypothetical 256-sided dice 270,000
times. Therefore, we theoretically have 256270,000 examples (a number that is 650,225
digits long) at 8-bit color space. 

 We would need a lot of examples to cover even 1% of this space. Of course, most of
these images would not make any sense. Frequently, our training set is a lot sparser
than that, so we need our algorithms to train using this relatively limited data to
extrapolate even into regions they have not seen at all yet. This is because the algo-
rithm most likely has seen nothing near what we have in the training set.

NOTE Having 100,000 examples is frequently cited as a minimum at which
deep learning algorithms should really start to shine.

We understand that algorithms have to meaningfully generalize; they have to be
able to meaningfully fill in the huge part of space where they have not seen any
example. Computer vision algorithms work mostly because they can come up with
good guesses for the vast swaths of missing probability, but their strength is also
their greatest weakness.

10.3 Use and abuse of training
In this section, we introduce two ways of thinking about adversarial examples—one
from first principles and the other by analogy. The first way to think about adversarial
examples is to start from the way machine learning classification is trained. Remem-
ber that these are networks with tens of millions of parameters. Throughout training,
we update some of them so that the class matches the label as provided in the training
set. We need to find just the right parameter updates, which is what the stochastic gra-
dient descent (SGD) allows us to do.

 Now think back to the simple classifier days, before you knew a lot about GANs.
Here we have some sort of learnable classification function f(x) (for example, a deep
neural network, or DNN), which is parametrized by  (parameters of the DNN) and
takes x (for example, an image) as input and produces a classification . At training
time, we then take  and compare it with the true y, which is how we get our loss (L).
We then update the parameters of f(x) such that the loss is minimized. Equations
10.1, 10.2, and 10.3 summarize.5

5 Please remember, this is just a quick summary, and we have to skip over some details, so if you can point them
out—great. If not, we suggest picking up a book such as Deep Learning with Python by François Chollet (Man-
ning, 2017) to brush up on the specifics.

ŷ
ŷ
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           = f(x) Equation 10.1

          L =  y –   Equation 10.2

          min  y –    s.t.  = f(x) Equation 10.3

In essence, we have defined prediction as the output of the neural net after being fed
an example (equation 10.1). Loss is some form of the difference between the true and
predicted label (equation 10.2). The overall problem is then phrased as trying to min-
imize the difference between the true and predicted labels over the parameters of the
DNN, which then constitute the prediction given an example (equation 10.3). 

 This is all working great, but how do we actually minimize our classification loss?
How do we solve the optimization problem as phrased in equation 10.3? We usually
use an SGD-based method to take batches of x ; then we take the derivative of the loss
function with respect to the current parameters ( t) multiplied by our learning rate
(), which constitutes our new parameters ( t + 1). See equation 10.4.

          Equation 10.4

This was the quickest introduction to deep learning you will ever find. But now that
you have this context, think about whether this powerful tool (SGD) could be used for
other purposes as well. For instance, what happens when we take a step up the loss
space rather than down? Turns out, maximizing the error rather than minimizing it is
much easier, but also important. And like many great discoveries, it started as a seem-
ing bug that turned into a hack: what if we start updating the pixels rather than the
weights? If we update them maliciously, adversarial examples happen.

 Some of you may be confused, about this quick recap of SGD, so let’s remind our-
selves what a typical loss space could look like in figure 10.1.

ŷ

ŷ

ŷ ŷ

t 1+ t  * L

------–=

Figure 10.1 In this typical loss space, remember, this is the type of loss value we can feasibly get with 
our deep learning algorithms. On the left, you have 2D contour lines of equal loss, and on the right, you have 
a 3D rendering of what a loss space may look like. Remember the mountaineering analogy from chapter 6? 
(Source: “Visualizing the Loss Landscape of Neural Nets,” by Tom Goldstein et al., 2018, https://github.com/tomgoldstein/
loss-landscape.)

https://github.com/tomgoldstein/loss-landscape
https://github.com/tomgoldstein/loss-landscape
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The second useful (though imperfect) mental model to think about adversarial
examples is by analogy. You may think of adversarial examples as Conditional GANs
like those we encountered in the preceding two chapters. With adversarial exam-
ples, we are conditioning on an entire image and trying to produce a domain trans-
ferred or similar image, except in a domain that fools the classifier. The “generator”
can be a simple stochastic gradient ascent that simply adjusts the image to fool some
other classifier.

 Whichever of the two ways makes sense to you, let’s now dive straight into adversarial
examples and what they look like. They were discovered with an observation of how easy
it is to misclassify these altered images. One of the first methods to achieve this is the fast
sign gradient method (FSGM), which is as simple as our previous description. 

 You start with the gradient update (equation 10.4), look at the sign, and then
make a small step in the opposite direction. In fact, frequently the images come out
looking (almost) identical! A picture is worth a thousand words to show you how little
noise is needed; see figure 10.2.

Now we run a ResNet-50 pretrained classifier on this unmodified vacation image and
check the top three predictions, shown in table 10.1; drumroll, please.

The top three are all sensible, with mountain_tent taking the top spot, as it should.
Table 10.2 shows the adversarial image predictions. The top three miss mountain_tent

Table 10.1 Original image predictions 

Order Class Confidence

First mountain_tent 0.6873

Second promontory 0.0736

Third valley 0.0717

Figure 10.2 A bit of noise makes a lot of difference. The picture in the middle has the noise 
(difference) applied to it (the picture to the right). Of course, the right picture is heavily amplified—
approximately 300 times—and shifted so that it can create a meaningful image.
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completely, with some suggestions that at least match the outdoors, but even the modi-
fied image is clearly not a suspension bridge.

This is how much we can distort the prediction, with a budget of only approximately
200 pixel values—the equivalent of taking a single almost-black pixel and turning it
into an almost-white pixel—spread across the whole image.

 A somewhat scary thing is how little code it takes to create this whole example. In
this chapter, we’ll use an amazing library called foolbox, which provides many great
convenience methods to create adversarial examples. Without further ado, let’s dive
into it. We start with our well-known imports, plus foolbox, which is a library designed
specifically to make adversarial attacks easier.

import numpy as np
from keras.applications.resnet50 import ResNet50
from foolbox.criteria import Misclassification, ConfidentMisclassification
from keras.preprocessing import image as img
from keras.applications.resnet50 import preprocess_input, decode_predictions
import matplotlib.pyplot as plt
import foolbox
import pprint as pp
Import keras
%matplotlib inline

Next, we define a convenience function to load in more images.

def load_image(img_path: str):
  image = img.load_img(img_path, target_size=(224, 224))
  plt.imshow(image)
  x = img.img_to_array(image)
  return x

image = load_image('DSC_0897.jpg')

Next, we have to set Keras to register our model and download ResNet-50 from the
Keras convenience function.

 

Table 10.2 Adversarial image predictions

Order Class Confidence

First volcano 0.5914

Second suspension_bridge 0.1685

Third valley 0.0869

Listing 10.1 Our trusty imports

Listing 10.2 Helper function
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keras.backend.set_learning_phase(0)           
kmodel = ResNet50(weights='imagenet')
preprocessing = (np.array([104, 116, 123]), 1)

fmodel = foolbox.models.KerasModel(kmodel, bounds=(0, 255),  
preprocessing=preprocessing)                    

to_classify = np.expand_dims(image, axis=0)      
preds = kmodel.predict(to_classify)                   
print('Predicted:', pp.pprint(decode_predictions(preds, top=20)[0]))
label = np.argmax(preds) 

image = image[:, :, ::-1]                     
attack = foolbox.attacks.FGSM(fmodel, threshold=.9, 

criterion=ConfidentMisclassification(.9))    
adversarial = attack(image, label)           

new_preds = kmodel.predict(np.expand_dims(adversarial, axis=0))     
print('Predicted:', pp.pprint(decode_predictions(new_preds, top=20)[0]))

That’s how easy it is to use these examples! Now you may be thinking, maybe that’s
just ResNet-50 that suffers from these examples. Well, we have some bad news for you.
ResNet not only proved to be the hardest classifier to break as we were testing various
code setups for this chapter, but also is an uncontested winner on DAWNBench in
every ImageNet category (which is the most challenging task in the CV category on
DAWNBench), as shown in figure 10.3.6

 But the biggest problem of adversarial examples is their pervasiveness. Adversarial
examples generalize beyond deep learning and transfer to different ML techniques. If
we generate an adversarial example against one technique, there is a reasonable
chance it will work even on another model we are trying to attack, as illustrated in fig-
ure 10.4.

 
 
 
 

Listing 10.3 Creating tables 10.1 and 10.2

6 See “Image Classification on ImageNet,” at DAWNBench, https://dawn.cs.stanford.edu/benchmark/#imagenet.
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::-1 reverses the color channels, 
because Keras ResNet-50 expects 
BGR instead of RGB.
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https://dawn.cs.stanford.edu/benchmark/#imagenet
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Figure 10.3 DAWNBench is a great place to see the current state-of-the-art models and ResNet-50 
dominance, at least as of early July 2019.
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Figure 10.4 The numbers here denote the percentage of adversarial examples 
crafted to fool the classifier in that row that also fooled that column’s classifier. 
The methods are deep neural networks (DNNs), logistic regression (LR), support-
vector machine (SVM), decision trees (DT), nearest neighbors (kNN), and 
ensembles (Ens.). 
(Source: “Transferability in Machine Learning: from Phenomena to Black-Box Attacks Using 
Adversarial Samples,” by Nicolas Papernot et al., 2016, https://arxiv.org/pdf/1605.07277.pdf.)

https://arxiv.org/pdf/1605.07277.pdf
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10.4 Signal and the noise
Worse yet, many of the adversarial examples are so easy to construct that we can just as eas-
ily fool the classifier by Gaussian noise that we can sample from np.random.normal. On
the other hand—and to support our earlier point of ResNet-50 being a fairly robust archi-
tecture—we will show you that other architectures suffer from this issue much more.

 Figure 10.5 shows the result of running ResNet-50 on pure Gaussian noise. How-
ever, we can use an adversarial attack on the noise itself to see how misclassified our
image can get—rather quickly.

In listing 10.4, we’ll use a projected gradient descent (PGD) attack, illustrated in figure 10.6.
Although this is still a simple attack, it warrants a high-level explanation. Unlike with the
previous attacks, we are now taking a step regardless of where it may lead us—even

Figure 10.5 It is clear that we do not get a confident classification as a wrong class in most 
cases on just naively sampled noise. So that is plus points to ResNet-50. On the left, we include 
the mean and variance we used so that you can see their impact.
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“invalid” pixel values—and then projecting back onto the feasible space. Now let’s apply
the PGD attack onto our Gaussian noise in figure 10.7 and run ResNet-50 to see how we do.

Projection

Gradient step

y (k + 1)

x (k + 1)

x (k )

�

Figure 10.6 Projected gradient descent takes 
a step in the optimal direction, wherever it may 
be, and then uses projection to find the nearest 
equivalent point in the set of points. In this case, 
we are trying to ensure that we still end up with a 
valid picture: we take an example x(k) and take the 
optimal step to y(k + 1) to then project it to a valid 
set of images as x(k + 1). 

Figure 10.7 When we run ResNet-50 on adversarial noise, we get a different story: most of 
the items are misclassified after applying a PGD attack—still a simple attack.
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To demonstrate that most architectures are even worse, we’ll look into Inception V3—
an architecture that has earned fame in the CV community. Indeed, this network has
been deemed so reliable that we touched on it in chapter 5. In figure 10.8, you can see
that even something that gave birth to the inception score still fails on trivial exam-
ples. To dispel any doubts, Inception V3 is still one of the better pretrained networks
out there and does have superhuman accuracy.

NOTE This was just regular Gaussian noise. You can see in the code for your-
self that no adversarial step was applied. Sure, you could argue that the noise
could have been preprocessed better. But even that is a massive adversarial
weakness.

Figure 10.8 Inception V3 applied to Gaussian noise. Notice that we are not using any attacks; 
this noise is just sampled from the distribution. 
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If you are anything like us, you are thinking, no way, I want to see for myself. Well, now
we give you the code to reproduce those figures. Because the code for each is similar,
we go through it only once and for next time promise DRYer code.

NOTE For an explanation of don’t repeat yourself (DRY) code, see Wikipedia at
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself.

fig = plt.figure(figsize=(20,20))
sigma_list = list(max_vals.sigma)    
mu_list = list(max_vals.mu)
conf_list = []

def make_subplot(x, y, z, new_row=False):     
    rand_noise = np.random.normal(loc=mu, scale=sigma, size=(224,224, 3)) 
    rand_noise = np.clip(rand_noise, 0, 255.)                          
    noise_preds = kmodel.predict(np.expand_dims(rand_noise, axis=0))   
    prediction, num = decode_predictions(noise_preds, top=20)[0][0][1:3] 
    num = round(num * 100, 2)
    conf_list.append(num)
    ax = fig.add_subplot(x,y,z)                        
    ax.annotate(prediction, xy=(0.1, 0.6), 
            xycoords=ax.transAxes, fontsize=16, color=’yellow’)
    ax.annotate(f’{num}%’ , xy=(0.1, 0.4),
            xycoords=ax.transAxes, fontsize=20, color=’orange’)
    if new_row:
        ax.annotate(f’$\mu$:{mu}, $\sigma$:{sigma}’ ,
                    xy=(-.2, 0.8), xycoords=ax.transAxes,
                    rotation=90, fontsize=16, color=’black’)
    ax.imshow(rand_noise / 255)      
    ax.axis(’off’)

for i in range(1,101):           
    if (i-1) % 10==0:
        mu = mu_list.pop(0)
        sigma = sigma_list.pop(0)
        make_subplot(10,10, i, new_row=True)
    else:
        make_subplot(10,10, i)

plt.show()

10.5 Not all hope is lost
Some people now start to worry about the security implications of adversarial exam-
ples. However, it is important to keep this in a meaningful perspective of a hypotheti-
cal attacker. If the attacker can change every pixel slightly, why not change the whole

Listing 10.4 Gaussian noise

Lists of means and 
variances as floats

The core function 
that renders 
figure 10.8

Sample noise for each 
mean and variance

Only 0–255
pixel values

permitted

ts our first
prediction

Gets the predicted
class and confidence,

respectivelySets up
annotating

code for
figure 10.8

and then
adds the

nnotations
and text

Division by 255 to 
convert [0, 255] to [0, 1]

The main for loop that 
allows us to insert 
subplots into the figure

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
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image?7 Why not just feed in another one that is completely different? Why does the
passed-in example have to be imperceptibly—rather than visibly—different?

 Some people give the example of self-driving cars and adversarially perturbing
stop signs. But if we can do that, why wouldn’t the attackers completely spray-paint
over the stop signs or simply physically obscure the stop sign with a high speed-limit
sign for a little while? Because these “traditional attacks,” unlike adversarial examples,
will work 100% of the time, whereas an adversarial attack works only when it transfers
well and manages to not get distorted by the preprocessing.

 This does not mean that when you have a mission-critical ML application, you can
just ignore this problem. However, it most cases, adversarial attacks require far more
effort than more commonplace vectors of attack, so bearing that in mind is worthwhile.

 Yet, as with most security implications, adversarial attacks also have adversarial
defenses that attempt to defend against the many types of attacks. The attacks covered
in this chapter have been some of the easier ones, but even simpler ones exist—such
as drawing a single line through MNIST. Even that is sufficient to fool most classifiers. 

 Adversarial defenses are an ever-evolving game, in which many good defenses are
available against some types of attacks, but not all. The turnaround can be so quick
that just three days after the submission deadline for ICLR 2018, seven of the eight
proposed and examined defenses were broken.8

10.6 Adversaries to GANs
To make the connection with GANs even clearer, imagine a system generating adver-
sarial examples, and another one saying how good that example is—depending on
whether the example managed to fool the system or not. Doesn’t that remind you of a
Generator (adversary) and a Discriminator (classification algorithm)? These two algo-
rithms are again competing: the adversary is trying to fool the classifier with slight per-
turbations of the image, and the classifier is trying to not get fooled. Indeed, a way to
think of GANs is almost as ML-in-the-loop adversarial examples that eventually come
up with images.

 On the other hand, you can think of iterated adversarial attacks as if you took a
GAN and, rather than specifying that the objective is to generate the most realistic
examples, you specify that the objective is to generate examples that will fool the clas-
sifier. Of course, you have to always remember that important differences exist, and
typically you have a fixed classifier in deployed systems. But that does not preclude us
from using this idea in adversarial training in which some implementations even
include a repeated retraining of the classifier based on the adversarial examples that
fooled it. These techniques are then moving closer to a typical GANs setup.

7 See “Motivating the Rules of the Game for Adversarial Example Research,” by Justin Gilmer et al., 2018,
http://arxiv.org/abs/1807.06732.

8 ICLR is the International Conference on Learning Representations, one of the smaller but excellent machine learn-
ing conferences. See Anish Athalye on Twitter in 2018, http://mng.bz/ad77. It should be noted that there
were three more defenses unexamined by the author.

https://shortener.manning.com/ad77
http://arxiv.org/abs/1807.06732
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 To give you an example, let’s take a look at one technique that has held its ground
for a while as a viable defense. In the Robust Manifold Defense, we take the following
steps to defend against the adversarial examples:9

1 We take an image x (adversarial or regular) and
a Project it back to the latent space z.
b Use the generator G to generate a similar example to x, called x* by G(z).

2 We use the classifier C to classify this example C(x*), which generally already
tends to misclassify way less than running the classification directly on x.

However, the authors of this defense find out that there are still some ambiguous cases
in which the classifier does get fooled by minor perturbations. Still, we encourage you
to check out their paper, as these cases tend to be unclear to humans as well, which is
a sign of a robust model. To fix this, we apply adversarial training on the manifold: we
get some of these adversarial cases into the training set so the classifier learns to distin-
guish those from the real training data.

 This paper demonstrates that using GANs can give us classifiers that do not com-
pletely break down after minor perturbations, even against some of the most sophisti-
cated methods. Performance of the downstream classifier does drop as with most of
these defenses, because our classifier now has to be trained to implicitly deal with
these adversarial cases. But even despite this setback, it is not a universal defense.

 Adversarial training, of course, has some interesting applications. For example, for
a while, the best results—state of the art—in semi-supervised learning were achieved
by using adversarial training.10 This was subsequently challenged by GANs (remember
chapter 7?) and other approaches, but that does not mean that by the time you are
reading these lines, adversarial training will not be the state of the art again.

 Hopefully, this gave you another reason to study GANs and adversarial examples—
partially because in mission-critical classification tasks, GANs may be the best defense
going forward or because of other applications beyond the scope of this book.11 That
is best left for a hypothetical Adversarial Examples in Action.

 To sum up, we have laid out the notion of adversarial examples and made the con-
nection to GANs even more specific. This is an underappreciated connection, but one
that can solidify your understanding of this challenging subject. Furthermore, one of
the defenses against adversarial examples are GANs themselves!12 So GANs also have
the potential to solve this gap that likely led to their existence in the first place.

9 See “The Robust Manifold Defense: Adversarial Training Using Generative Models,” by Ajil Jalal et al., 2019,
https://arxiv.org/pdf/1712.09196.pdf.

10 See “Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning,”
by Takeru Miyato et al., 2018, https://arxiv.org/pdf/1704.03976.pdf.

11 This was a hotly debated topic at ICLR 2019. Though most of these conversations were informal, using
(pseudo) invertible generative models as a way to classify “out-of-sample”ness of an image seems like a fruitful
avenue.

12 See Jalal et al., 2019, https://arxiv.org/pdf/1712.09196.pdf.

https://arxiv.org/pdf/1712.09196.pdf
https://arxiv.org/pdf/1712.09196.pdf
https://arxiv.org/pdf/1704.03976.pdf


180 CHAPTER 10 Adversarial examples
10.7 Conclusion
Adversarial examples are an important field, because even commercial computer
vision products suffered from this shortcoming and can still be easily fooled by aca-
demics.13 Beyond security and machine learning explainability applications, many
practical uses remain in fairness and robustness. 

 Furthermore, adversarial examples are an excellent way of solidifying your own
understanding of deep learning and GANs. Adversarial examples take advantage of
the difficulty in training classifiers in general and the relative ease of fooling the classi-
fier in one particular case. The classifier has to make predictions for many images, and
crafting a special offset to fool the classifier exactly right is easy because of the many
degrees of freedom. As a result, we can easily get adversarial noise that completely
changes the label of a picture without changing the image perceptibly.

 Adversarial examples can be found in many domains and many areas of AI, not
just deep learning or computer vision. But as you saw in the code, creating the ones in
computer vision is not challenging. Defenses against these examples exist, and you
saw one using GANs, but adversarial examples are far from being solved completely.

Summary
 Adversarial examples, which come from abusing the dimensionality of the

problem space, are an important aspect of machine learning because they show
us why GANs work and why some classifiers can be easily broken.

 We can easily generate our own adversarial examples with real images and noise.
 Few meaningful attack vectors can be used with adversarial examples.
 Applications of adversarial examples include cybersecurity and machine learn-

ing fairness, and we can defend against them by using GANs.

13 See “Black-Box Adversarial Attacks with Limited Queries and Information,” by Andrew Ilyas et al., 2018,
https://arxiv.org/abs/1804.08598.

https://arxiv.org/abs/1804.08598


Practical applications
of GANs
As captivating as generating handwritten digits and turning apples into oranges
may be, GANs can be used for a lot more. This chapter explores some of the practi-
cal applications of GANs. It is only fitting that this chapter focuses on areas where
GANs have been harnessed for practical use. After all, one of our main goals with
this book is to give you the knowledge and tools necessary to not only understand
what has been accomplished with GANs to date, but also to empower you to find
new applications of your choosing. There is no better place to start that journey
than taking a look at several successful examples of just that.

 You have already seen several innovative use cases of GANs. Chapter 6 showed
how Progressive GANs can create not only photorealistic renditions of human
faces, but also samples of, arguably, much greater practical importance: medical
mammograms. Chapter 9 showed how the CycleGAN can create realistic simulated
virtual environments by translating clips from a video game into movie-like scenes,
which can then be used to train self-driving cars. 

 This chapter reviews GAN applications in greater detail. We will walk through
what motivated these applications, what makes them uniquely suited to benefit

This chapter covers
 Use of GANs in medicine

 Use of GANs in fashion
181
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from the advances made possible by GANs, and how their creators went about imple-
menting them. Specifically, we will look at GAN applications in medicine and fashion.
We chose these two fields based on the following criteria: 

 They showcase not only academic but also, and primarily, the business value of
GANs. They represent how the academic advances achieved by GAN research-
ers can be applied to solve real-world problems.

 They use GAN models that are understandable with the tools and techniques
discussed in this book. Instead of introducing new concepts, we will look at how
the models we implemented can be applied to uses other than the MNIST.

 They are understandable without the need for specialized domain expertise.
For example, GAN applications in chemistry and physics tend to be hard to
comprehend for anyone without a strong background in the given field.

Moreover, the chosen fields and the examples we selected serve to illustrate the versa-
tility of GANs. In medicine, we show how GANs can be useful in situations with limited
data. In fashion, we present the other extreme and explore GAN applications in sce-
narios where extensive datasets are available. Even if you have no interest in medicine
or fashion, the tools and approaches that you will learn about in this chapter are appli-
cable to countless other use cases. 

 Sadly, as is all too often the case, the practical applications we will review are virtu-
ally impossible to reproduce in a coding tutorial because of the proprietary or other-
wise hard-to-obtain nature of the training data. Instead of a full coding tutorial like
the ones throughout this book, we can provide only a detailed explanation of the
GAN models and the implementation choices behind them. Accordingly, by the end
of this chapter, you should be fully equipped to implement any of the applications in
this chapter by making only small modifications to the GAN models we implemented
earlier and feeding them a dataset for the given use case or one similar to it. With that,
let’s dive in.

11.1 GANs in medicine
This section presents applications of GANs in medicine. Namely, we look at how to use
GAN-produced synthetic data to enlarge a training dataset to help improve diagnostic
accuracy. 

11.1.1 Using GANs to improve diagnostic accuracy

Machine learning applications in medicine face a range of challenges that lend the
field well to benefiting from GANs. Perhaps most important, it is challenging to pro-
cure training datasets large enough for supervised machine learning algorithms
because of difficulties involved in collecting medical data.1 Obtaining samples of med-
ical conditions tends to be prohibitively expensive and impractical.

1 See “Synthetic Data Augmentation Using GAN for Improved Liver Lesion Classification,” by Maayan Frid-
Adar et al., 2018, http://mng.bz/rPBg.

http://mng.bz/rPBg
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 Unlike datasets of handwritten letters for optical character recognition (OCR) or
footage of roads for self-driving cars, which anyone can procure, examples of medical
conditions are harder to come by, and they often require specialized equipment to
collect. Not to mention the all-important considerations of patient privacy that limit
how medical data can be collected and used. 

 In addition to difficulties in obtaining medical datasets, it is also challenging to
properly label this data, a process that often requires annotations by people with
expert knowledge of a given condition.2 As a result, many medical applications have
been unable to benefit from advances in deep learning and AI.

 Many techniques have been developed to help address the problem of small
labeled datasets. In chapter 7, you learned how GANs can be used to enhance the
performance of classification algorithms in a semi-supervised setting. You saw how
the SGAN achieved superior accuracy while using only a tiny subset of labels for
training. This, however, addresses only half of the problem medical researchers
face. Semi-supervised learning helps in situations in which we have a large dataset,
but only a small portion of it is labeled. In many medical applications, having labels
for a tiny portion of the dataset is only part of the problem—this small portion is
often the only data we have! In other words, we do not have the luxury of thousands
of additional samples from the same domain just waiting to be labeled or used in a
semi-supervised setting.

 Medical researchers strive to overcome the challenge of insufficient datasets by
using data-augmentation techniques. For images, these include small tweaks and
transformations such as scaling (zooming in and out), translations (moving left/right
and up/down), and rotations.3 These strategies allow a single example to be used to
create many others, thereby expanding the dataset size. Figure 11.1 shows examples of
data augmentations commonly used in computer vision.

 As you may imagine, standard data augmentation has many limitations. For one,
small modifications yield examples that do not diverge far from the original image. As
a result, the additional examples do not add much variety to help the algorithm learn
to generalize.4 In the case of handwritten digits, for example, we want to see the num-
ber 6 rendered in different writing styles, not just permutations of the same underly-
ing image. 

 In the case of medical diagnostics, we want different examples of the same
underlying pathology. Enriching a dataset with synthetic examples, such as those
produced by GANs, has the potential to further enrich the available data beyond tra-
ditional augmentation techniques. That is precisely what the Israeli researchers
Maayan Frid-Adar, Eyal Klang, Michal Amitai, Jacob Goldberger, and Hayit Green-
span set out to investigate. 

2 Ibid.
3 Ibid.
4 Ibid.
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11.1.2 Methodology

Frid-Adar and her team found themselves in a catch-22 situation: their goal was to train 
a GAN to augment a small dataset, but GANs themselves need a lot of data to train. In 
other words, they wanted to use GANs to create a large dataset, but they needed a 
large dataset to train the GAN in the first place. 

 Their solution was ingenious. First, they used standard data-augmentation tech-
niques to create a larger dataset. Second, they used this dataset to train a GAN to cre-
ate synthetic examples. Third, they used the augmented dataset from step 1 along 
with the GAN-produced synthetic examples from step 2 to train a liver lesion classifier.

 The GAN model the researchers used was a variation on the Deep Convolutional 
GAN (DCGAN) covered in chapter 4. Attesting to the applicability of GANs across a

5 See “Cancer Incidence and Mortality Worldwide: Sources, Methods, and Major Patterns in GLOBOCAN 2012,”
by J. Ferlay et al., 2015, International Journal of Cancer, https://www.ncbi.nlm.nih.gov/pubmed/25220842.

Figure 11.1 Techniques used to enlarge a dataset by altering existing data include scaling (zooming 
in and out), translations (moving left/right and up/down), and rotations. Although effective at 
increasing dataset sizes, classic data augmentation techniques bring only limited additional data 
diversity.
(Source: “Data Augmentation: How to Use Deep Learning When You Have Limited Data,” by Bharath Raj, 2018, 
http://mng.bz/dxPD.)

Encouraged by GANs’ ability to synthesize high-quality images in virtually any domain,
Frid-Adar and her colleagues decided to explore the use of GANs for medical data aug-
mentation. They chose to focus on improving the classification of liver lesions. One of 
their primary motivations for focusing on the liver is that this organ is one of the three
most common sites for metastatic cancer, with over 745,000 deaths caused by liver can-
cer in 2012 alone.5 Accordingly, tools and machine learning models that would help 
doctors diagnose at-risk patients have the potential to save lives and improve outcomes
for countless patients.

https://www.ncbi.nlm.nih.gov/pubmed/25220842
https://shortener.manning.com/dxPD
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wide array of datasets and scenarios, Frid-Adar et al. had to make only minor tweaks and
customizations to make the DCGAN work for their use case. As evidenced by figure 11.2,
the only parts of the model that needed adjustment were the dimensions of the hid-
den layers and the dimensions of the output from the Generator and input into the
Discriminator network.

Instead of 28 × 28 × 1-sized images like those in the MNIST dataset, this GAN deals 
with images that are 64 × 64 × 1. As noted in their paper, Frid-Adar et al. also used 
5 × 5 convolutional kernels—but then again, that is also only a small change to the 
network hyperparameters. Except for the image size, which is given by the training 
data, all these adjustments were in all likelihood determined by trial and error. The 
researchers kept tweaking the parameters until the model produced satisfactory 
images.

 Before we review how well the approach devised by Frid-Adar and her team worked, 
let’s pause for a moment and appreciate how far your understanding of GANs has pro-
gressed. As early as chapter 4 in this book, you had already learned enough about 
GANs to apply them to a real-world scenario, discussed in a paper presented at the 
2018 International Symposium on Biomedical Imaging.6

6 See Frid-Adar et al., 2018, http://mng.bz/rPBg.
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Figure 11.2 The DCGAN model architecture employed by Frid-Adar et al. to generate synthetic images of liver 
lesions to augment their dataset, aiming to improve classification accuracy. The model architecture is similar 
to the DCGAN in chapter 4, underscoring the applicability of GANs across a wide array of datasets and use 
cases. (Note that the figure shows only the GAN flow for fake examples.) 
(Source: Frid-Adar et al., 2018, http://mng.bz/rPBg
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11.1.3 Results

Using DCGAN for data augmentation, Frid-Adar and her team achieved a significant 
improvement in classification accuracy compared to the baseline (standard data aug-
mentation only).7 Their results are summarized in figure 11.3, which shows the classi-
fication accuracy (y-axis) as the number of training examples (x-axis) increases.

The dotted line depicts classification performance for classic data augmentation. The
performance improves as the quantity of new (augmented) training examples increases;
however, the improvement plateaus around the accuracy of 80%, beyond which addi-
tional examples fail to yield improvement.

 The dashed line shows the additional increase in accuracy achieved by augment-
ing the dataset using GAN-produced synthetic examples. Starting from the point
beyond which additional classically augmented examples stopped improving accuracy,
Frid-Adar et al. added synthetic data produced by their DCGAN. The classification

7 Ibid.
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Figure 11.3 This chart shows classification accuracy as new examples are added 
using two dataset augmentation strategies: standard/classic data augmentation; and 
augmentation using synthetic examples produced by DCGAN. Using standard 
augmentation (dotted line), the classification performance peaks at around 80%. Using 
GAN-created examples (dashed line) boosts the accuracy to over 85%. 
(Source: Frid-Adar et al., 2018, http://mng.bz/rPBg.)
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performance improved from around 80% to over 85%, demonstrating the useful-
ness of GANs.

 Improved classification of liver lesions is only one of many data-constrained use
cases in medicine that can benefit from data augmentation through GAN-produced
synthetic examples. For example, a team of British researchers led by Christopher
Bowles from the Imperial College London harnessed GANs (in particular, the Pro-
gressive GANs discussed in chapter 6) to boost performance on brain segmentation
tasks.8 Crucially, an improvement in performance can unlock a model’s usability in
practice, especially in fields like medicine, where accuracy may mean the difference
between life and death.

 Let’s switch gears and explore applications of GANs in a field with much lower
stakes and a whole different set of considerations and challenges: fashion. 

11.2 GANs in fashion
Unlike medicine, for which data is hard to obtain, researchers in fashion are fortunate
to have huge datasets at their disposal. Sites like Instagram and Pinterest have count-
less images of outfits and clothing items, and retail giants like Amazon and eBay have
data on millions of purchases of everything from socks to dresses. 

 In addition to data availability, many other characteristics make fashion well-suited
to AI applications. Fashion tastes vary greatly from customer to customer, and the abil-
ity to personalize content has the potential to unlock significant business benefits. In
addition, fashion trends change frequently, and it is vital for brands and retailers to
react quickly and adapt to customers’ shifting preferences.

 In this section, we explore some of the innovative uses of GANs in fashion.

11.2.1 Using GANs to design fashion

From drone deliveries to cashier-less grocery stores, Amazon is no stranger to head-
line news about its futuristic endeavors. In 2017, Amazon earned another one, this
time about the company’s ambition to develop an AI fashion designer by using no
other technique than GANs.9 The story, published in MIT Technology Review, is unfortu-
nately short on details besides the mention of using GANs to design new products
matching a particular style. 

 Luckily, researchers from Adobe and the University of California, San Diego, pub-
lished a paper in which they set out to accomplish the same goal.10 Their approach
can give us a hint about what goes on behind the secretive veil of Amazon’s AI
research labs seeking to reinvent fashion. Using a dataset of hundreds of thousands of

8 See “GAN Augmentation: Augmenting Training Data Using Generative Adversarial Networks,” by Christopher
Bowles et al., 2018, https://arxiv.org/abs/1810.10863.

9 See “Amazon Has Developed an AI Fashion Designer,” by Will Knight, 2017, MIT Technology Review, http://
mng.bz/VPqX.

10 See “This AI Learns Your Fashion Sense and Invents Your Next Outfit,” by Jackie Snow, 2017, MIT Technology
Review, http://mng.bz/xlJ8.

https://arxiv.org/abs/1810.10863
https://shortener.manning.com/VPqX
https://shortener.manning.com/VPqX
https://shortener.manning.com/VPqX
https://shortener.manning.com/xlJ8
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users, items, and reviews scraped from Amazon, lead author Wang-Cheng Kang and
his collaborators trained two separate models: one that recommends fashion and the
other that creates it.11 

 For our purposes, we can treat the recommendation model as a black box. The
only thing we need to know about the model is what it does: for any person-item pair,
it returns a preference score; the greater the score, the better match the item is for
the person’s tastes. Nothing too unusual.

 The latter model is a lot more novel and interesting—not only because it uses GANs,
but also thanks to the two creative applications Kang and his colleagues devised: 

 Creating new fashion items matching the fashion taste of a given individual
 Suggesting personalized alterations to existing items based on an individual’s

fashion preferences. 

In this section, we explore how Kang and his team achieved these goals.

11.2.2 Methodology

Let’s start with the model. Kang and his colleagues use a Conditional GAN (CGAN),
with a product’s category as the conditioning label. Their dataset has six categories:
tops (men’s and women’s), bottoms (men’s and women’s), and shoes (men’s and
women’s).

 Recall that in chapter 8, we used MNIST labels to teach a CGAN to produce any
handwritten digit we wanted. In a similar fashion (pun intended), Kang et al. use the
category labels to train their CGAN to generate fashion items belonging to a specified
category. Even though we are now dealing with shirts and pants instead of threes and
fours, the CGAN model setup is almost identical to the one we implemented in chap-
ter 8. The Generator uses random noise z and conditioning information (label/cate-
gory c) to synthesize an image, and the Discriminator outputs a probability that a
particular image-category pair is real rather than fake. Figure 11.4 details the network
architecture Kang et al. used.

 Each box represents a layer; fc stands for fully connected layer; st denotes strides for
the convolutional kernel whose dimensions (width × height) are given as the first two
numbers in the conv/deconv layers; and deconv and conv denote what kind of layer is
used: a regular convolution or a transposed convolution, respectively. The number
directly after the conv or deconv sets the depth of the layer or, equivalently, the number
of convolutional filters used. BN tells us that batch normalization was used on the out-
put of the given layer. Also, notice that Kang et al. chose to use least squares loss
instead of cross-entropy loss.

 Equipped with a CGAN capable of producing realistic clothing items for each of
the top-level categories in their dataset, Kang and his colleagues tested it on two

11 See “Visually-Aware Fashion Recommendation and Design with Generative Image Models,” by Wang-Cheng
Kang et al., 2017, https://arxiv.org/abs/1711.02231.

https://arxiv.org/abs/1711.02231
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applications with significant practical potential: creating new personalized items and
making personalized alterations to existing items.

11.2.3 Creating new items matching individual preferences

To ensure that the produced images are customized to an individual’s fashion taste,
Kang and his colleagues came up with an ingenious approach. They started off with
the following insight: given that their recommendation model assigns scores to existing
items based on how much a person would like the given item, the ability to generate
new items maximizing this preference score would likely yield items matching the per-
son’s style and taste.12 

 Borrowing a term from economics and choice theory,13 Kang et al. call this process
preference maximization. What is unique about Kang et al.’s approach is that their uni-
verse of possible items is not limited to the corpus of training data or even the entire

12 Ibid.
13 See “Introduction to Choice Theory,” by Jonathan Levin and Paul Milgrom, 2004, http://mng.bz/AN2p.

z, 100 c, one-hot

x, 128*128*3 c, one-hot

5*5 conv, 64, st. 2 c, one-hot

5*5 conv, 128, st. 2, BN c, one-hot

5*5 conv, 256, st. 2, BN

5*5 conv, 512, st. 2, BN

c, one-hot

c, one-hot

fc, 1024 c, one-hot

fc, 1

least square loss

fc, 8*8*256, BN

5*5 deconv, 256, st. 2, BN

5*5 deconv, 256, st. 1, BN

5*5 deconv, 256, st. 1, BN

5*5 deconv, 256, st. 2, BN

5*5 deconv, 128, st. 2, BN

5*5 deconv, 64, st. 2, BN

5*5 deconv, 3, st. 1

(a) Generator ( , )G z c (b) Discriminator ( , )D x c

Figure 11.4 The architectures of the CGAN Generator and the Discriminator networks that Kang et 
al. use in their study. The label c represents the category of clothing. The researchers use it as the 
conditioning label to guide the Generator to synthesize an image matching the given category, and 
the Discriminator to identify real image-category pairs. 
(Source: Kang et al., 2017, https://arxiv.org/abs/1711.02231.)

https://arxiv.org/abs/1711.02231
https://shortener.manning.com/AN2p
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Amazon catalog. Thanks to their CGAN, they can fine-tune the generation of new
items to virtually infinite granularity. 

 The next problem Kang and his colleagues had to solve was ensuring that the
CGAN Generator would produce a fashion item maximizing individual preference.
After all, their CGAN was trained to produce realistic-looking images for only a given
category, not a given person. One possible option would be to keep generating images
and check their preference score until we happen upon one whose score is sufficiently
high. However, given the virtually infinite variations of the images that can be gener-
ated, this approach would be extremely inefficient and time-consuming.

 Instead, Kang and his team solved the issue by framing it as an optimization prob-
lem: in particular, constraint maximization. The constraint (the boundary within
which their algorithm had to operate) is the size of the latent space, given by the size
of the vector z. Kang et al. used the standard size (100-dimensional vector) with each
number in [–1, 1] range. To make the values differentiable so that they can be used in
an optimization algorithm, the authors set each element in the vector z to the tanh
function, initialized randomly.14 

 The researchers then employed gradient ascent. Gradient ascent is just like gradient
descent, except that instead of minimizing a cost function by iteratively moving in the
direction of the steepest decrease, we are maximizing a reward function (in this case, the
score given by the recommendation model) by iteratively moving in the direction of
the steepest increase.

 Kang et al.’s results are shown in figure 11.5, which compares the top three images
from the dataset with the top three generated images for six different individuals.
Attesting to the ingenuity of Kang et al.’s solution, the examples they produced have
higher preference scores, suggesting that they are a better match for the shoppers’
style and preferences.

 The three columns on the left show the items from the dataset with the highest
scores; the three columns on the right show generated items with the highest scores.
Based on the preference score, the generated images are a better match for the shop-
pers’ preferences.

 Kang and his team didn’t stop there. In addition to creating new items, they
explored whether the model they developed could be used to make changes to
existing items, tailored to an individual’s style. Given the highly subjective nature of
fashion shopping, having the ability to alter a garment until it is “just right” has sig-
nificant potential business benefits. Let’s see how Kang et al. went about solving this
challenge.

 
 

14 See Kang et al., 2017, https://arxiv.org/abs/1711.02231.

https://arxiv.org/abs/1711.02231
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11.2.4 Adjusting existing items to better match individual preferences

Recall that the numbers in the latent space (represented by the input vector z) have
real-world meaning, and that vectors that are mathematically close to one another (as
measured by their distance in the high-dimensional space they occupy) tend to produce

(a) Top-3 results from dataset

12.29 11.79 11.76 12.89 12.56 12.67

8.07 8.06 7.81 8.14 8.00 7.37

7.07 6.78 6.70 9.49 9.34 8.56

13.28 12.75 12.51 15.05 13.93 13.74

4.27 4.21 4.20 5.37 5.20 4.46

10.28 10.27 10.15 12.67 11.87 10.94

(b) Top-3 results from GAN

Figure 11.5 In the results Kang et al. present in their paper, every image is 
annotated with its preference score. Each row shows results for a different 
shopper and product category (men’s and women’s tops, men’s and women’s 
bottoms, and men’s and women’s shoes). 
(Source: Kang et al., 2017, https://arxiv.org/abs/1711.02231.)

https://arxiv.org/abs/1711.02231
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images that are similar in terms of content and style. Accordingly, as Kang et al. point
out, in order to generate variations of some image A, all we need to do is to find the
latent vector zA that the Generator would use to create the image. Then, we could
produce images from neighboring vectors to generate similar images.

 To make it a little less abstract, let’s look at a concrete example using our favorite
dataset, the MNIST. Consider an input vector z' that, when fed into the Generator,
produces an image of the number 9. If we then feed the vector z" that is, mathemati-
cally speaking, very close to z' in the 100-dimensional latent space the vectors occupy,
then z" will produce another, slightly different, image of the number 8. This is illus-
trated in figure 11.6. You saw a little bit of this back in chapter 2. In the context of vari-
ational autoencoders, the intermediate/compressed representation works just like z
does in the world of GANs.

Of course, in fashion, things are more nuanced. After all, a photo of a dress is incom-
parably more complex than a grayscale image of a numeral. Moving in the latent space
around a vector producing, say, a T-shirt, can produce a T-shirt in different colors,

Figure 11.6 Variations on the digit 9 obtained by moving around 
in the latent space (image reproduced from chapter 2). Nearby 
vectors produce variations on the same digit. For example, notice 
that as we move from left to right in the first row, the numeral 9 
starts off being slightly right-slanted but eventually turns fully 
upright. Also notice that as we move far enough away, the number 
9 morphs into another, visually similar digit. Progressive variations 
like these apply equally to more complex datasets, where the 
variations tend to be more nuanced.
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patterns, and styles (V-neck as opposed to crew-neck, for example). It all depends on
the types of encodings and meanings the Generator has internalized during training.
The best way to find out is to try.

 This brings us to the next challenge Kang and his team had to overcome. In
order for the preceding approach to work, we need the vector z for the image we
want to alter. This would be straightforward if we wanted to modify a synthetic
image: we can just record the vector z each time we generate an image so that we
can refer to it later. What complicates the situation in our scenario is that we want to
modify a real image. 

 By definition, a real image cannot have been produced by the Generator, so there
is no vector z. The best we can do is to find latent space representation of a generated
image as close as possible to the one we seek to modify. Put differently, we have to find
a vector z that the Generator uses to synthesize an image similar to the real image, and
use it as a proxy for the hypothetical z that would have produced the real image. 

 That is precisely what Kang et al. did. Just as before, they start by formulating the
scenario as an optimization problem. They define a loss function in terms of the so-
called reconstruction loss (a measure of the difference between two images; the
greater the loss, the more different a given pair of images is from one another).15

Having formulated the problem in this way, Kang et al. then iteratively find the clos-
est possible generated image for any real image by using gradient descent (minimiz-
ing the reconstruction loss). Once we have a fake image that is similar to the real
image (and hence also the vector z used to produce it), we can modify it through
the latent space manipulations.

 This is where the approach Kang and his colleagues devised shows its full poten-
tial. We can move around the latent space to points that generate images similar to the
one we want to modify, while also optimizing for the preferences of the given user. We
can see this process in figure 11.7: as we move from left to right in each row, the shirts
and pants get progressively more personalized. 

 For instance, the person of the first row was looking for a more colorful option
and, as Kang et al. observed, the person in row 5 seems to prefer brighter colors and a
more distressed look; and the last person, it appears, prefers skirts over jeans. This is
hyperpersonalization at its finest. No wonder Amazon took notice.

 The leftmost photo shows the real product from the training dataset; the second
photo from the left shows a generated image closest to the real photo that was used as
a starting point for the personalization process. Each image is annotated with its pref-
erence score. As we move from left to right, the item is progressively optimized for the
given individual. As evidenced by the increasing scores, the personalization process
improves the likelihood that the item matches the given shopper’s style and taste.

15 Ibid.
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Prototype

Optimization process

Approximated image

(a) (b0) (b10) (b20) (b40) (b50)

13.81 13.60 14.84 16.41 17.30 17.78

7.86 8.03 8.19 9.96 13.26 13.60

-1.82 -2.50 -1.95 -1.80 -1.52 -0.92

6.36 6.24 7.22 7.69 8.35 8.65

0.38 0.86 1.12 2.69 3.23 3.35

–1.32 –1.27 0.75 3.28 5.62 6.36

Figure 11.7 The personalization process for six shoppers (three male and 
three female) using the same starting image: polo shirt for males and a pair of 
pants for women. 
(Source: Kang et al., 2017, https://arxiv.org/abs/1711.02231.)

https://arxiv.org/abs/1711.02231
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11.3 Conclusion
The applications covered in this chapter only scratch the surface of what is possible
with GANs. Countless other use cases exist in medicine and fashion alone, not to men-
tion other fields. What is certain is that GANs have expanded far beyond academia,
with myriad applications leveraging their ability to synthesize realistic data.

Summary
 Because of the versatility of GANs, they can be harnessed for a wide array of

nonacademic applications and easily repurposed to use cases beyond the
MNIST.

 In medicine, GANs produce synthetic examples that can improve classification
accuracy beyond what is possible with standard dataset augmentation strategies.

 In fashion, GANs can be used to create new items and alter existing items to bet-
ter match someone’s personal style. This is accomplished by generating images
that maximize preference score provided by a recommendation algorithm.



Looking ahead
In this final chapter, we want to give you a brief overview of our thoughts about the
ethics of GANs. Then we will talk about some important innovations that we expect
to be even more important in the future. This chapter includes high-level ideas that
we expect to define the future of GANs, but it does not feature any code. We want
you to be prepared for the GANtastic journey ahead—even for advances that are
yet to be published at the time of writing. Lastly, we will wrap up and say our teary-
eyed goodbyes.

This chapter covers
 The ethics of generative models

 Three recent improvements that we expect to be 
dominant in the years to come:

– Relativistic GAN (RGAN)

– Self-Attention GAN (SAGAN)

– BigGAN

 Further reading for three more cutting-edge 
techniques

 A summary of the key themes and takeaways 
from this book
196
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12.1 Ethics
The world is beginning to realize that AI ethics—GANs included—is an important
issue. Some institutions have decided to not release their expensive, pretrained mod-
els for fear of misuse as a tool for generating fake news.1 Numerous articles describe
the ways in which GANs specifically may have potential malicious uses.2 

 We all understand that misinformation can be a huge problem and that GANs with
photorealistic, synthetic images could pose a danger. Imagine synthesizing videos of a
world leader saying they are about to launch a military strike on another country. Will
the correcting information spread quickly enough to soothe the panic that will follow?

 This is not a book about AI ethics, so we touch on this topic only briefly. But we
strongly believe that it is important for all of us to think about the ethics of what we
are doing and about the risks and unintended consequences that our work could
have. Given that AI is such a scalable technology, it is vital to think through whether
we are helping to create a world we want to live in. 

 We urge you to think about your principles and to go through at least one of the
more evolved ethical frameworks. We are not going to discuss which one is better than
the other—after all, humans have generally not yet agreed on a moral framework on
much more mundane things—but please put the book down and read at least one of
these if you have not already.

NOTE You can read about Google’s AI principles at https://ai.google/
principles. The Institute for Ethical AI & ML details its principles at https://
ethical.institute/principles.html. See also “IBM’s Rometty Lays Out AI Con-
siderations, Ethical Principles,” by Larry Dignan, 2017, ZDNet, http://mng
.bz/ZeZm.

For example, the technology known as DeepFakes—although not originally based on
GANs—has been cited by many as a source for concern.3 DeepFakes—a portmanteau
of deep learning and fake imagery—has already proven controversial by generating fake
political videos and synthetic involuntary pornographic content. Soon, this technol-
ogy may be at a point where it would be impossible to tell whether the video or image
is authentic. Given GANs’ ability to synthesize new images, they may soon dominate
this domain. 

 To say that everyone should think about the consequences of their research and
code seems insufficient, but the reality is that there is no silver bullet. We should

1 See “An AI That Writes Convincing Prose Risks Mass-Producing Fake News,” by Will Knight, MIT Technology
Review, 2019, http://mng.bz/RPGj.

2 See “Inside the World of AI that Forges Beautiful Art and Terrifying Deepfakes,” by Karen Hao, MIT Technol-
ogy Review, 2019, http://mng.bz/2JA8. See also “AI Gets Creative Thanks to GANs Innovations,” by Jakub
Langr, Forbes, 2019, http://mng.bz/1w71.

3 See “The Liar’s Dividend, and Other Challenges of Deep-Fake News,” by Paul Chadwick, The Guardian, 2018,
http://mng.bz/6wN5. See also “If You Thought Fake News Was a Problem, Wait for DeepFakes,” by Roula
Khalaf, 2018, Financial Times, http://mng.bz/PO8Y. 

https://shortener.manning.com/RPGj
https://shortener.manning.com/2JA8
https://shortener.manning.com/1w71
https://shortener.manning.com/ZeZm
https://shortener.manning.com/ZeZm
https://shortener.manning.com/ZeZm
https://shortener.manning.com/PO8Y
https://ai.google/principles
https://ai.google/principles
https://ai.google/principles
https://ethical.institute/principles.html
https://ethical.institute/principles.html
https://ethical.institute/principles.html
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consider these implications, even if the initial focus was entirely ethical, regardless of
whether we are working in research or industry. We also do not want to give you a dull
lecture nor unsubstantiated media-grabbing forecast, but this is a problem we care
deeply about.

 AI ethics is a real problem already, and we have presented three real problems
here—AI-generated fake news, synthesized political proclamations, and involuntary
pornography. But many more problems exist, such as Amazon using an AI-hiring tool
showing negative bias against women.4 But the practical landscape is complicated—
some suggest that GANs have a tendency to favor images of women in face-genera-
tion. Yet another angle is that GANs also have a potential to help AI be more ethi-
cal—by synthesizing the underrepresented class in, for example, face-recognition
problems in a semi-supervised setup, thereby improving the quality of classification
in less-represented communities.

 We are writing this book partially to make everyone more aware of the possibilities
and possible misuses of GANs. We are excited by the future academic and practical
applications of GANs and the ongoing research, but we are also aware that some appli-
cations may have negative uses. Because it is impossible to “uninvent” a technology, we
have to be aware of its capabilities. By no means are we saying that the world would be
better off if GANs did not exist—but GANs are just a tool, and as we all know, tools can
be misused. 

 We feel morally compelled to talk about the promises and dangers of this tech-
nology, as otherwise misusing it becomes easier by a narrow group of the initiated.
Although this book is not written for the general public, we hope that this is one
stepping stone toward broader awareness—beyond the mostly academic circles that
have dominated the field of GANs for now. Equally, much of the public outreach we
are doing—we hope—is contributing to greater knowledge and discussions about
this topic.

 As more people are aware of this technology, even the existing malicious actors will
no longer be able to catch anyone by surprise. We are hoping that GANs will never be
a source of malicious acts, but that may be too idealistic. The next best thing is for
knowledge of GANs to be available to everyone—not just academics and really
invested malicious parties. We also hope (and all evidence thus far seems to point to
this reality) that GANs will overall contribute positively to art, science, and engineer-
ing. Furthermore, people are also working on DeepFake detection, incorporating
ideas from GANs and adversarial examples, but we have to be cautious, because any
classifier that can detect these with any degree of accuracy will lend all the more cred-
ibility to an example that will manage to fool it.

 In many ways, we are also hoping to start a more thorough conversation without
any grandstanding—this is an invitation to connect with us through our book forums
or our Twitter accounts. We are aware that we need a diverse range of perspectives to

4 See “Amazon Scraps Secret AI Recruiting Tool That Showed Bias Against Women,” by Jeffrey Dastin, 2018,
Reuters, http://mng.bz/Jz8K.

https://shortener.manning.com/Jz8K
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keep checking our moral framework. We also are aware that these things will evolve
over time, especially as use cases become clearer. Indeed, some people—such as Bene-
dict Evans of a16z—argue that to regulate or talk about the ethics of AI does not make
any more sense than to talk about the ethics of databases. What matters is the use case,
not the technology.

12.2 GAN innovations
Speaking of use cases, we are aware that GANs are an ever-evolving field. In this sec-
tion, we want to quickly update you on things that are not as robust in the community
as some of the topics in prior chapters, but things we expect to be significant in the
future. In the spirit of keeping this practical, we have picked out three GAN innova-
tions that all have an interesting practical application: either a practical paper
(RGAN), GitHub project (SAGAN), or artistic application (BigGAN).

12.2.1 Relativistic GAN

Not often do we get to see an update so simple and elegant that it could have been in
the original paper, yet powerful enough to beat many of the state-of-the-art algo-
rithms. Relativistic GAN (RGAN) is one such example. The core idea of the RGAN is
that in addition to the original GAN (specifically, the NS-GAN that you may recall
from chapter 5), we add an extra term to the Generator—forcing it to make the gen-
erated data seem more real than the real data. 

 In other words, the Generator should, in addition to making fake data seem more
real, make real data seem comparatively less real, thereby also increasing the stability
of the training. But of course, the only data the Generator has control over is the syn-
thetic data, so the Generator can achieve this only comparatively.

 The RGAN’s author describes it as being a generalized version of the WGAN,
which we discussed previously. Let’s start with the simplified loss function from table 5.1
in chapter 5: 

           LD = E[D(x)] – E[D(G(z))] Equation 12.1

           LG = E[D(G(z))] Equation 12.2

Recall that equation 12.1 describes the loss function for the Discriminator—where we
measure the difference between the real data (D(x)) and the generated ones
(D(G(z))). Equation 12.2 then describes the loss function of the Generator, where we
are trying to make the Discriminator believe that the samples it is seeing are real. 

 To go to our closest predecessor, remember that the WGAN is trying to minimize
the amount of probability mass we would have to move to get the generated distribu-
tion to look like the real one. In this sense, the RGAN has many similarities (for exam-
ple, the Discriminator is frequently called the critic, and the WGAN is presented as a
special case of the RGAN in this paper). Ultimately, both measure the current state of
play as a single number—remember the earth mover’s distance?
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 The innovation of the RGAN is that we no longer get the previous unhelpful
dynamic of the Generator always playing catch-up. In other words, the Generator is
trying to generate data that looks more realistic than the real data so that it is not
always on the defensive. As a result, D(x) can be interpreted as the probability that the
real data is more realistic than the generated data. 

 Before we delve into the difference on a high level, we will introduce a slightly dif-
ferent notation, as to approximate the notation used by the paper, but simplify. In
equations 12.3 and 12.4, C(x) acts as a critic similar to a WGAN setup,5 and you may
think of it as a Discriminator. Furthermore, a() is defined as log(sigmoid()). In the
paper, G(z) is replaced by xf for fake samples, and x gets subscript r to indicate real
samples, but we will follow the simpler notation from the earlier chapters.

          LD = E[a(C(x)] – C(G(z)))] Equation 12.3

          LG = E[aC(G(z)) – C(x))] Equation 12.4

Importantly, in these equations, we see only one key difference in the Generator: the
real data now adds into the loss function. This seemingly simple trick aligns the incen-
tives of the Generator to not be at a permanent disadvantage. To understand this and
two other perspectives in an idealized setting, let’s plot the different Discriminator
outputs as in figure 12.1.

5 Because we are skipping over some details, we want to equip you with the high-level idea and keep the nota-
tion consistent so that you can fill in the blanks yourself.
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Figure 12.1 Under divergence minimization (a), the Generator is always playing catch-up with the 
Discriminator (because divergence is always  0). In (b), we see what “good” NS-GAN training looks like. 
Again, the Generator cannot win. In (c), we can see that now the generator can win, but more importantly, 
the Generator always has something to strive for (and therefore recover useful gradient), no matter the stage 
of training. 
(Source: “The Relativistic Discriminator: A Key Element Missing from Standard GAN,” by Alexia Jolicoeur-Martineau, 2018, 
http://arxiv.org/abs/1807.00734.)

http://arxiv.org/abs/1807.00734
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You may be wondering, why should just adding this term be noteworthy? Well, this
simple addition makes the training significantly more stable at a little extra computa-
tional cost. This is important, especially when you remember the “Are GANs Created
Equal?” paper from chapter 5, where the authors argue that all the major GAN archi-
tectures considered so far have an only limited improvement over the original GAN
when adjusted for the extra processing requirements. This is because many new GAN
architectures are better only at huge computational cost, which makes them less use-
ful, but the RGAN has potential to change GAN architectures across the board. 

 Always be aware of this trick, because even though a method may take fewer
update steps, if each step takes two times longer because of the extra computation, is
it really worth it? The peer review process at most conferences is not immune to this
weakness, so you have to be careful.

APPLICATION

Your next question may be, why should this matter in practice? In less than a year, this
paper has gathered more than 50 citations6—which is a lot for a new paper from a
previously unknown author. Moreover, people have already written papers using the
RGAN to, for example, achieve state-of-the-art speech (that is, best performance ever
achieved) enhancement, beating other GAN-based and non-GAN-based methods.7 

 As you are reading this, the paper should be available, so feel free to take a look.
Explaining this paper, with all the background necessary, however, is beyond the
scope of this book.

12.2.2 Self-Attention GAN

The next innovation we believe is going to change the landscape is the Self-Attention
GAN (SAGAN). Attention is based on a very human idea of how we look at the world—
through small patches of focus at a time.8 A GAN’s attention works similarly: your
mind is consciously able to focus on only a small part of, say, a table, but your brain is
able to stitch the whole table together through quick, minor eye movements called
saccades while still focusing on only a subset of the image at a time. 

 The computer equivalent has been used in many fields, including natural lan-
guage processing (NLP) and computer vision. Attention can help us solve, for exam-
ple, the problem of convolutional neural networks (CNNs) ignoring much of the
picture. As we know, CNNs rely on a small receptive field—as determined by the size
of the convolution. However, as you may recall from chapter 5, in GANs, the size of
the receptive field is likely to cause problems (such as cows with multiple heads or
bodies), and the GAN will not consider them strange. 

 This is because when generating or evaluating that subset of the image, we may see
that a leg is present in one field, but we do not see that other legs are already present in

6 The following link names all the papers that cite the RGAN paper: http://mng.bz/omGj.
7 See “SERGAN: Speech Enhancement Using Relativistic Generative Adversarial Networks with Gradient Penalty,”

by Deepak Baby and Sarah Verhulst, 2019, IEEE-ICASSP, https://ieeexplore.ieee.org/document/ 8683799.
8 See The Mind Is Flat: The Illusion of Mental Depth and the Improvised Mind by Nick Chater (Penguin, 2018).

http://mng.bz/omGj
https://ieeexplore.ieee.org/document/8683799
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another one. This could be because the convolution ignores the structure of the object
or because legs or leg rotations are represented by different, higher-level neurons that do
not talk to each other. Our seasoned data scientists will remember that is what Hinton’s
CapsuleNets were attempting to solve, but they never really took off. For everyone else,
the short story is that no one can say with absolute certainty why attention fixes this, but a
good way to think about it is that we can now create feature detectors with a flexible recep-
tive field (shape) to really focus on several key aspects of a given picture (see figure 12.2).

Recall that this is especially a problem when our images are, say, 512 × 512, but the
largest commonly used convolution sizes are 7, so that is loads of ignored features!
Even in higher-level nodes, the neural network may not be appropriately checking for,
for example, a head in the right place. As a result, as long as the cow has a cow head
next to a cow body, the network does not care about any other head, as long as it has
at least one. But the structure is wrong.

 These higher-level representations are harder to reason about, and so even
researchers disagree as to exactly why this happens, but empirically, the network does
not seem to pick it up. Attention allows us to pick out the relevant regions—whatever
the shape or size—and consider them appropriately. To see the types of regions that
attention can flexibly focus on, consider figure 12.3.

Figure 12.2 The output pixel (2 × 2 
patch) ignores anything except the 
small highlighted region. Attention 
helps us solve that.
(Source: “Convolution Arithmetic,” by 
vdmoulin, 2016, https://github.com/
vdumoulin/conv_arithmetic.)

Figure 12.3 Here, we can see the regions of the image that the attention mechanism pays most 
attention to, given a representative query location. We can see that the attention mechanism generally 
cares about regions of different shapes and sizes, which is a good sign, given that we want it to pick out 
the regions of the image that indicate the kind of object it is. 
(Source: “Self-Attention Generative Adversarial Networks,” by Han Zhang, 2018, http://arxiv.org/abs/1805.08318.)

https://github.com/vdumoulin/conv_arithmetic
https://github.com/vdumoulin/conv_arithmetic
http://arxiv.org/abs/1805.08318
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APPLICATION

DeOldify (https://github.com/jantic/DeOldify) is one of the popular applications of
the SAGAN that was made by Jason Antic, a student of Jeremy Howard’s fast.ai course.
DeOldify uses the SAGAN to colorize old images and drawings to an amazing level of
accuracy. As you can see in figure 12.4, you can turn famous historic photographs and
paintings into fully colorized versions.

12.2.3 BigGAN

Another architecture that has taken the world by storm is BigGAN.9 BigGAN has
achieved highly realistic 512 × 512 images on all 1,000 classes of ImageNet—a feat pre-
viously deemed almost impossible with the current generation of GANs. BigGAN
achieved three times the previous best inception score. In brief, BigGAN builds on the
SAGAN and spectral normalization and has further innovated in five directions:

 Scaling up GANs to previously unbelievable computational scale. The BigGAN
authors trained with eight times the batch size, which was part of their success—
giving already a 46% boost. Theoretically, the resources required to train a
BigGAN add up to $59,000 worth of compute.10

 BigGAN’s architecture has 1.5 times the number of channels (feature maps) in
each layer relative to the SAGAN architecture. This may be due to the complex-
ity of the dataset used.

9 See “Large Scale GAN Training for High Fidelity Natural Image Synthesis,” by Andrew Brock et al., 2019,
https://arxiv.org/pdf/1809.11096.pdf.

10 See Mario Klingemann’s Twitter post at http://mng.bz/wll2.

Figure 12.4 Deadwood, South Dakota, 1877. The image on the right has been colorized . . . for a black-and-white 
book. Trust us. If you do not believe us, check out the online liveBook on Manning’s website to see for yourself!

https://shortener.manning.com/wll2
https://github.com/jantic/DeOldify
https://arxiv.org/pdf/1809.11096.pdf
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 Improving the stability of the Generator and the Discriminator through con-
trolling the adversarial process, which leads to overall better results. The under-
lying mathematics are unfortunately beyond the scope of this book, but if
you’re interested, we recommend starting with understanding spectral normal-
ization. For those who are not, take solace in the fact that even the authors
themselves abandon this strategy in later parts of training and let the mode col-
lapse because of computational costs.

 Introducing a truncation trick to give us a way of controlling the trade-off
between variety and fidelity. The truncation trick achieves better equality results
if we sample closer to the middle of the distribution (truncate it). It makes
sense that this would yield better samples, as this is where BigGAN has the
“most experience.”

 The authors introduce a further three theoretical advancements. According to
the authors’ own performance table, however, these seem to have only a mar-
ginal effect on the scores and frequently lead to less stability. They are useful for
computational efficiency, but we will not discuss them.

APPLICATION

One fascinating artistic application of BigGAN is the Ganbreeder app, which was made
possible thanks to the pretrained models and Joel Simon’s hard work. Ganbreeder is an
interactive web-based (free!) way to explore the latent space of BigGAN. It has been
used in numerous artistic applications as a way to come up with new images. 

 You can either explore the adjacent latent space or use a linear interpolation
between two samples of the two images to create new images. Figure 12.5 shows an
example of creating Ganbreeder offspring.

 BigGAN is further notable because DeepMind has given us all this compute for
free and uploaded pretrained models onto TensorFlow Hub—a machine learning
code repository that we used in chapter 6.

12.3 Further reading
We wanted to cover many other topics that seem to be gaining popularity in the works
of academics and practitioners, but we did not have the space. Here, we will list at least
three of them for interested readers. We hope we have equipped you with all that you
need to understand these papers. We picked just three, as we expect this section to be
changing quickly:

 Style GAN (http://arxiv.org/abs/1812.04948) merges ideas from GANs and “tra-
ditional” style transfer to give users much more control over the output they
generate. This Conditional GAN from NVIDIA has managed to produce stun-
ning full-HD results with several levels of control—from finer details to overall
image. This work builds on chapter 6, so you may want to reread it before delv-
ing into this paper.

http://arxiv.org/abs/1812.04948
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 Spectral normalization (http://arxiv.org/abs/1802.05957) is a complex regular-
ization technique and requires somewhat advanced linear algebra. For now, just
remember the use case—stabilizing training by normalizing the weights in a
network to satisfy a particular property, which is even formally required in
WGAN (touched on in chapter 5). Spectral normalization acts somewhat simi-
larly to gradient penalties.

Figure 12.5 Every time you click the Make Children button, Ganbreeder gives you a selection of 
mutated images in the nearby latent space, producing the three images below. You may start from 
your own sample or someone else’s—thereby making it a collaborative exercise. This is what the 
Crossbreed section is for, where you can select another interesting sample from other parts of the 
space and mix the two samples. Lastly, in Edit-Genes, you can edit parameters (such as Castle and 
Stone Wall, in this case) and add more or less of that feature into the picture. 
(Source: Ganbreeder, http://mng.bz/nv28.)

http://arxiv.org/abs/1802.05957
http://mng.bz/nv28
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 SPADE, aka GauGAN (https://arxiv.org/pdf/1903.07291.pdf) is cutting-edge
work published in 2019 to synthesize photorealistic images based solely on a
semantic map of the image, as you may recall from the start of chapter 9. The
images can be up to 512 × 256 in resolution, but knowing NVIDIA, this may
increase before the end of the year. This may be the most challenging tech-
nique of the three, but also one that has gathered the most media attention—
probably because of how impressive the tech demo is!

There is so much going on in the world of GANs that it may be impossible to stay up-
to-date all the time. However, we hope that in terms of both ethical frameworks and
the latest interesting papers, we have given you the resources needed to look at the
problems in this ever-evolving space. Indeed, that is our hope, even when it comes to
the innovations behind the GANs presented in this chapter. We do not know whether
all of these will become part of the routine bag of tricks that people use, but we think
that they might. We also hope that this will be true for the most recent innovations
listed in this section.

12.4 Looking back and closing thoughts
We hope that the cutting-edge techniques we’ve discussed will give you enough subject
material to continue exploring GANs even as our book comes to an end. Before we send
you off, however, it is worth looking back and recapping all that you have learned.

 We started off with a basic explanation of what GANs are and how they work (chap-
ter 1) and implemented a simple version of this system (chapter 3). We introduced
you to generative models in an easier setting with autoencoders (chapter 2). We cov-
ered the theory of GANs (chapters 3 and 5) as well as their shortcomings and some of
the ways to overcome them (chapter 5). This provided the foundation and tools for
the later, advanced chapters. 

 We implemented several of the most canonical and influential GAN variants—Deep
Convolutional GAN (chapter 4) and Conditional GAN (chapter 8)—as well as a few of
the most advanced and complex ones—Progressive GANs (chapter 6) and CycleGANs
(chapter 9). We also implemented Semi-Supervised GANs (chapter 8), a GAN variant
designed to tackle one of the most severe shortcomings in machine learning: the lack of
large, labeled datasets. We also explored several of the many practical and innovative
applications of GANs (chapter 11), and presented adversarial examples (chapter 10),
which are a challenge for all of machine learning.

 Along the way, you expanded your theoretical and practical toolbox. From incep-
tion score and Fréchet inception distance (chapter 5) to pixel-wise feature normaliza-
tion (chapter 6), batch normalization (chapter 4), and dropout (chapter 7), you
learned about concepts and techniques that will serve you well for GANs and beyond. 

 As we look back, it is worth highlighting a few themes that came up time and time
again as we explored GANs:

 GANs are tremendously versatile, in terms of both practical use cases and resil-
ience against theoretical requirements and constraints. This was perhaps most

https://arxiv.org/pdf/1903.07291.pdf


207Looking back and closing thoughts
apparent in the case of CycleGAN in chapter 9. This technique not only is
unconstrained by the need for paired data that burdened its predecessors, but
also can translate between examples in virtually any domain, from apples and
oranges to horses and zebras. The versatility of GANs was also evident in chap-
ter 6, where you saw that Progressive GANs can learn to generate equally well
images as disparate as human faces and medical mammograms, and in chapter 7,
where we needed to make only a handful of adjustments to turn the Discrimina-
tor into a multiclass classifier. 

 GANs are as much an art as they are a science. The beauty and the curse of
GANs—and, indeed, deep learning in general—is that our understanding of
what makes them work so well in practice is limited. Few known mathematical
guarantees exist, and most achievements are experimental only. This makes
GANs susceptible to many training pitfalls, such as mode collapse, which you
may recall from our discussion in chapter 5. Fortunately, researchers have
found many tips and tricks that greatly mitigate these challenges—everything
from input preprocessing to our choice of optimizer and activation functions—
many of which you learned about and even saw firsthand in code tutorials
thought the book. Indeed, as the GAN variants covered in this chapter show,
the techniques to improve GANs continue to evolve.

In addition to difficulties in training, it is crucial to keep in mind that even techniques
as powerful and versatile as GANs have other important limitations. GANs have been
hailed by many as the technique that gave machines the gift of creativity. This is true
to a degree—in a few short years, GANs have become the undisputed state-of-the-art
technique in synthesizing fake data; however, they fall short of what human creativity
can do. 

 Indeed, as we showed time and time again throughout this book, GANs can mimic
the features of almost any existing dataset and come up with examples that look as
though they came from that dataset. However, by their very nature, GANs will not stray
far from the training data. For instance, if we have a training dataset of classical art
masterpieces, the examples our GAN will produce will look more like Michelangelo
than Jackson Pollock. Until a new AI paradigm comes along that gives machines true
autonomy, it will be ultimately up to the (human) researcher to guide the GAN to the
desired end goal. 

 As you experiment with GANs and their applications, bear in mind not only the
practical techniques, tips, and tricks covered throughout this book, but also the ethi-
cal considerations discussed in this chapter. With that, we wish you all the best in the
GANtastic journey ahead.

—Jakub and Vladimir
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Summary
 We touched on AI and GAN ethics and discussed the moral frameworks, need

for awareness, and openness of discussion.
 We equipped you with the innovations we believe will drive the future of GANs,

and we gave you the high-level idea behind the following:
– Relativistic GAN, which now ensures that the Generator considers the rela-

tive likelihood of real and generated data
– SAGAN, with attention mechanisms that act similarly to human perception
– BigGAN, which allowed us to generate all 1,000 ImageNet classes of unprece-

dented quality
 We highlighted two key recurring themes of our book: (1) the versatility of

GANs and (2) the necessity for experimentation because, much like the rest of
deep learning, GANs are as much an art as they are a science.
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